Objective
Primary production in the ocean is critically important for human wellbeing - it regulates atmospheric carbon dioxide as well as sustaining almost all ocean life. But models predicting the impacts of climate change do not agree on the sign of ocean primary production in the coming century. Currently, satellite observations tell us how ocean primary productivity is changing, but not the underlying controls. Fieldwork and modelling show nutrient limitation is key, but there is currently no way to observe nutrient limitation at the scales needed to monitor climate change impacts or benchmark the accuracy of models. This project aims to overcome the scaling problem using direct, nutrient-regulated fluorescence signals passively emitted from phytoplankton and detected by satellite sensors in space. Although recorded for almost two decades, these signals have been confounded by uncertainty. In Ocean Glow I will take a two-pronged approach to break through the current blockage. In the first prong, a novel laboratory mesocosm facility will be constructed and used to quantify the key factors regulating phytoplankton fluorescence emission, in the same way that it is stimulated and detected by satellites. In the second prong I will connect these experimental results with the real world by undertaking field observations on research cruises through the global ocean, using approaches that I have pioneered in my previous research. Finally, I will use this ground-based assessment to perform data-informed deconvolution of the satellite fluorescence signal to observe nutrient limitation at a global, time-resolved scale using the existing, two-decade satellite record. In making a step change in the utility of satellite-detected fluorescence, Ocean Glow will deliver the tool needed to make mechanistic assessments of how climate change is impacting ocean productivity.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences marine biology
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
24148 Kiel
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.