Project description
Bright future for silicon in quantum technologies
Just like crystals that inherently possess imperfections, silicon has also many point defects. Recent research has shown these fluorescent point defects could be optically isolated and emit in the near-infrared and in telecom bands associated with minimal losses in optical fibres. The EU-funded SILEQS project aims to control these optically active defects and develop promising candidates for use in quantum computers, combining the benefits of electrical and photonic qubits. Researchers will seek to demonstrate for the first time indistinguishable single-photon emission from individual defects in silicon and control over their spin degrees of freedom. Project achievements will pave the way for advances in quantum integrated photonics, large-scale quantum networks and solid-state hybrid quantum systems.
Objective
Leveraging the success of the microelectronics and integrated photonics industries, silicon is one of the most promising platforms for developing large-scale quantum technologies. Quantum chips already available in silicon rely on either long-lived electrical qubits based on individual quantum dots or single donors, or on photonic qubits probabilistically generated by non-linear optical processes. Another type of quantum system could combine the advantages of both former qubits by featuring at the same time a stationary qubit with long coherence times and an optical interface adapted to long-distance exchange of quantum information. However, such a qubit that would be associated to optically-active spin defects is still to be demonstrated in silicon. This is the challenging objective of the current project.
The starting point of the SILEQS project is the recent discovery that silicon hosts many fluorescent point defects that can be optically isolated at single scale, and furthermore emit at the near-infrared range and telecom bands associated with minimal losses in optical fibers. This project aims to demonstrate for the first time in silicon (1) the indistinguishable single-photon emission from individual defects and (2) the control over their spin degrees of freedom to create multi-spin quantum registers coupled to single photons. Such achievements would open the door to developing silicon-integrated deterministic sources of photonic qubits and spin qubits interfaced with light for long-distance quantum communications in a platform adapted to large-scale nanofabrication and integration. Considering the advanced nanotechnology based on silicon, the SILEQS project could have significant impact in quantum technologies, including quantum integrated photonics, large-scale quantum networks and solid-state hybrid quantum systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology nanotechnology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences electromagnetism and electronics microelectronics
- natural sciences chemical sciences inorganic chemistry metalloids
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.