Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Highly Redox-active Atomic Centers in Electrode Materials for Rechargeable Batteries

Project description

Innovative storage mechanism boosts battery performance

Long-lasting batteries that can be charged quickly are crucial for electromobility. The most successful alkali-ion batteries have one thing in common: the use of insertion-type electrode materials. These materials provide sufficient space in their crystal structure for the reversible insertion of the alkali ions, without causing substantial rearrangement. However, the number of ions that can be reversibly inserted is limited. The EU-funded RACER project will introduce a completely new storage mechanism for charge carriers. In addition to the typical reversible storage of ions in the crystal lattice of the electrode material, it will use controlled extended redox reactions at the atomic level. This will significantly increase the energy density and lead to faster charging times.

Objective

Lithium-ion batteries are the state-of-the-art electrochemical energy storage technology, sodium-ion batteries are about to become commercial, and potassium-ion batteries are attracting rapidly increasing interest. All these alkali-ion battery (AIB) technologies, especially the already or soon-to-be commercialized battery chemistries, have one common characteristic making them so successful – the use of insertion-type electrode materials. These materials provide sufficient space in their crystal structure for the alkali ions to be reversibly inserted, without causing substantial (irreversible) rearrangement. However, the fact that the ions can only occupy specific sites in the host lattice intrinsically limits the amount of ions that can be reversibly inserted.
The aim of this project is the development of a new family of electrode materials for AIBs, which is characterized by an innovative storage mechanism. This mechanism combines the benefits of a stable insertion-type host structure with an extended redox activity and additional available space for the alkali-ion charge carriers resulting from the introduction of carefully selected atomic redox centres (ARCs). Based on own preliminary results and new yet to be developed suitable host matrices and ARCs, and their comprehensive investigation by highly complementary ex/in situ and operando characterization techniques to gain an in-depth understanding of this new mechanism, we will develop specific guidelines and design criteria for the realization of such novel materials. These criteria and guidelines will be effectively evaluated by designing new materials which benefit of this new charge storage mechanism and, thus, enable long-term stable insertion-type AIBs with enhanced energy and power densities. Moreover, the results obtained will allow for an improved understanding of the redox behaviour of the highly active ARCs at the atomic level – a field of research that has been limited to theoretical studies so far

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-STG

See all projects funded under this call

Host institution

KARLSRUHER INSTITUT FUER TECHNOLOGIE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 324 314,00
Address
KAISERSTRASSE 12
76131 Karlsruhe
Germany

See on map

Region
Baden-Württemberg Karlsruhe Karlsruhe, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 324 314,00

Beneficiaries (1)

My booklet 0 0