Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Tracing nanoparticle-fuelled co-mobilization of catalyst metals across Earth's deep-sea redox interfaces to pave the way for habitability detection in Ocean Worlds

Project description

Research paves the way for exploring the habitability of ocean worlds in our solar system

Redox metals such as iron, nickel, copper and manganese stemming from deep-sea interfaces played a pivotal role in the evolution of Earth’s biogeochemical cycles and life. The chemical reactions behind metabolism – processes occurring within living organisms to sustain life – may have formed spontaneously in Earth’s oceans. The reactions taking place in water were accelerated by metal catalysts and nanoparticles. The EU-funded DeepTrace project will develop a groundbreaking mechanistic, analytical and predictive framework for describing the mobilisation of metal catalysts across Earth’s marine redox interfaces. Further understanding of sub-ocean metal redox catalysis underpinning ecosystem evolution in Earth’s oceans will help researchers explore the habitability of ocean worlds in our solar system.

Objective

Redox metals such as Fe, Mo, V, Ni, Cu and Mn, supplied from deep-sea interfaces, played a pivotal role in the coupled evolution of Earth's biogeochemical cycles and life. Accordingly, future search for life in Ocean Worlds of the Solar System will greatly benefit from going beyond parameters such as water and organics, and being able to detect signs of subsurface metal catalysis. As fundamental metabolism requires metal clusters and nanoparticles; their formation, detection and link to Earth’s ocean biogeochemical structure can pave the way for inference of metal catalysis from plume ejecta compositions of Ocean Worlds such as Europa and Enceladus. DeepTrace will advance a ground-breaking mechanistic, analytical and predictive framework on the nanoparticle-fuelled co-mobilization of catalyst metals across Earth's marine redox interfaces. The key idea is to establish the concept of sub-ocean metal redox catalysis underpinning the ecosystem evolution of Earth’s oceans and use it to explore habitability of Ocean Worlds. In DeepTrace we will conduct multidisciplinary sea expeditions to unravel how the six redox metals co-mobilize by studying Earth analogues such as deep-sea hydrothermal vents and suboxic/anoxic seas. Integrating state-of-the-art methods with emerging innovative approaches such as time-of-flight single-particle-inductively coupled plasma mass spectrometry, we will advance the multi-element detection of nanoparticles. Finally, to build a predictive framework that will enable the estimation of nanoparticle fluxes from deep-sea boundaries and inferring the metabolic potential of Ocean Worlds, we will develop novel biogeochemical models. DeepTrace will tap the potential of tracing redox metals as one of best opportunities in the next decade for detecting life in Ocean Worlds, and accelerate improved parametrizations of metal cycles for better prediction of Earth’s marine ecosystems under multi-stressors such as deoxygenation, warming and biodiversity loss.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-COG

See all projects funded under this call

Host institution

MIDDLE EAST TECHNICAL UNIVERSITY
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 399 350,00
Address
DUMLUPINAR BULVARI 1
06800 Ankara
Türkiye

See on map

Region
Batı Anadolu Ankara Ankara
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 399 350,00

Beneficiaries (1)

My booklet 0 0