Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Bringing Nanospace to Life by Adapting Pore Environments to Chemical Complexity

Project description

Unlocking the potential of pore chemistry

Metal-organic frameworks (MOFs) are a class of hybrid crystalline materials built from the interconnection of metal nodes and organic ligands. Their ultrahigh porosity, and unprecedented chemical and structural tuneability have created interest in applications from storage and separation to catalysis. The EU-funded LIVINGPORE project will untap the potential of pore sequencing to control the conformational response of frameworks and encapsulated guests to lay definitive understanding on how reticular frameworks can be used to respond to (transformable) or select (transformative) specific molecular recognition patterns for cooperative selection in a crystalline solid. The project pursues a shift in the current perception of MOFs into unique porous materials capable of structural/functional responses closer to biological systems to enable distinctive applications currently unthinkable of, that will be initially demonstrated in separation and biocatalysis.

Objective

The conformational flexibility and biological function of proteins is dictated by the positioning of a few amino acids into specific arrangements linked by peptide bonds. We intend to implement this same principle of sequencing, essential to biology, to synthetic porous materials by encoding pore environments with atomic precision to control structural response and function. The road to this vision remains blocked by the lack of methodologies and understanding which is required to untap the value of pore chemistry in controlling the conformational response of frameworks and encapsulated guests. LIVINGPORE is structured around the complementary concepts of ‘transformable’ and ‘transformative’ porosity, that share the use of amino acid side chain chemistry and peptide bond rotations for selecting the conformational response and function of flexible frameworks (oligopeptide linkers) or flexible guests (small enzymes) by using programmed pore settings and mutants. We will develop both concepts in parallel by implementing a central high-throughput workflow that integrates computational and experimental routines for rational design and accelerated discovery. These synergic, multidisciplinary tools will be used to i) guide chemical synthesis, ii) evaluate structural response and iii) rationalize function, all required for going beyond what can be currently achieved with conventional methods. The central objective of this materials chemistry project is to lay definitive understanding on how reticular frameworks can be used to respond to (transformable) or select (transformative) specific molecular recognition patterns for cooperative selection in a crystalline solid. The long-term vision is a shift in the present perception of Metal-Organic Frameworks into unique porous materials capable of structural/functional responses closer to biological systems that enable distinctive applications currently unthinkable of, here initially demonstrated in separation and biocatalysis.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-COG

See all projects funded under this call

Host institution

UNIVERSITAT DE VALENCIA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 998 974,00
Address
AVENIDA BLASCO IBANEZ 13
46010 Valencia
Spain

See on map

Region
Este Comunitat Valenciana Valencia/València
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 998 974,00

Beneficiaries (1)

My booklet 0 0