Project description
Innovative flow control strategies for reduced emissions
The aviation sector has significant economic and environmental impacts due to high CO2 emissions. There is a pressing need to improve the aerodynamic performance of aeroplane wings to reduce fuel consumption and emissions. One of the strategies is to perform flow control. The ERC funded DEEPCONTROL project will use high-fidelity simulations and deep reinforcement learning to develop a framework for real-time prediction and control of the flow around wing sections and three dimensional wings based only on sparse measurements. The project aims to discover novel solutions in terms of flow actuation and design of winglet geometry to improve aviation sustainability. DEEPCONTROL will also perform detailed wind tunnel experiments at the KTH Royal Institute of Technology in Sweden to assess the framework for real-time applications.
Objective
Over the past decades, aviation has become an essential component of today’s globalized world: before the current pandemic of coronavirus disease 2019 (COVID-19), over 100,000 flights took off everyday worldwide, and a number of studies indicate that after the pandemic its relevance in the transportation mix will be similar to that before COVID-19. Aviation alone is responsible for 12% of the carbon dioxide emissions from the whole transportation sector, and for 3% of the total CO2 emissions in the world. Due to the major environmental and economical impacts associated to aviation, there is a pressing need for improving the aerodynamic performance of airplane wings to reduce fuel consumption and emissions. This implies reducing the force parallel to the incoming flow, i.e. the drag, and one of the strategies to achieve such a reduction is to perform flow control.
DEEPCONTROL aims at using high-fidelity simulations and deep reinforcement learning to develop a framework for real-time prediction and control of the flow around wing sections and three-dimensional wings based only on sparse measurements. We will first perform high-order spectral-element simulations of wing sections and three-dimensional wings at high Reynolds numbers. Using sparse measurements at the wall, we will reconstruct the velocity fluctuations above the wall within a region of interest. To this end, we will employ a generative adversarial network (GAN), together with a fully-convolutional network (FCN) and modal decomposition. Then, we will perform flow control based on deep reinforcement learning (DRL), which will enable discovering novel solutions in terms of flow actuation and design of winglet geometry. In order to assess the robustness of the framework for real-time applications, we will carry out detailed wind-tunnel experiments at KTH.
This framework will constitute a breakthrough in aviation sustainability, and will enable developing more efficient aeronautical solutions worldwide.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences health sciences public health epidemiology pandemics
- medical and health sciences health sciences infectious diseases RNA viruses coronaviruses
- natural sciences computer and information sciences artificial intelligence machine learning deep learning
- natural sciences mathematics pure mathematics geometry
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
100 44 STOCKHOLM
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.