Objective
This project will build living evolutionary cellular computers, and showcase them as intelligent bioremediation agents. Current synthetic genetic networks that perform human-defined computations must remain unchanged—as initially designed—in order to perform well. This is a problem, since biological substrate adapts and evolves, compromising durability, robustness, and computing power. We will exploit the intrinsic dynamic features of living systems. ECCO’s biocomputers will be able self-adapt and reconfigure at run-time. They will show unprecedented levels of robustness and efficiency—far beyond current technological limits. To this end, we will tackle intra-cellular evolvability and multi-cellular reconfigurability. At the intra-cellular level, we will upgrade current genetic circuitry with pre-defined mutation, evaluation and selection dynamics. Circuits will optimise themselves. At the multi-cellular level, we will design cellular consortia able to reconfigure its structure—therefore changing its functionality—according to environmental needs, thus adaptive. The ECCO project will integrate theoretical developments with in-vivo experimentation. The soil bacteria Pseudomonas putida will be used as a host to illustrate the capabilities of evolutionary genetic circuits. To demonstrate long-run efficiency, bacteria will be used to colonize the root of the plant Arabidopsis thaliana—a much more complex environment than the pristine laboratory conditions where circuits are often characterized. Reconfigurability will be achieved by building a multicellular computer able to switch between metal and aromatic removal circuits—two important pollutants. Evolution, adaptation and reconfigurability are elusive to conventional computers; conveniently, these are intrinsic properties of living organisms. The ECCO will benefit from this in order to engineer living computers that unlock applications in novel domains—from synthetic agriculture to precision bioremediation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology bacteriology
- engineering and technology environmental biotechnology bioremediation
- natural sciences biological sciences genetics mutation
- agricultural sciences agriculture, forestry, and fisheries agriculture
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28006 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.