Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Integrated simulations of active emulsions in complex environments

Project description

An agent-based simulation will help explain the behaviour of biomolecular condensates

Organisms are largely water with many interspersed biomolecules, compounds and ions. Within cells, these constituents form different compartments to fulfill functions. While large compartments are often surrounded by a membrane, most smaller compartments form spontaneously from the interactions among dispersed molecules. Consequently, these biomolecular condensates behave similarly to liquid droplets. Their malfunction is involved in diseases, including Alzheimer’s, Parkinson’s and cancer. The EU-funded EmulSim project will investigate how healthy cells control their condensates on all length scales to elucidate how they become malfunctioning in diseased states. The insight will lead to a novel agent-based simulation framework to support the development of new therapeutics.

Objective

Biological cells consist of a myriad of interacting biomolecules that collectively arrange in stable structures. For example, molecules undergo phase separation to form so-called biomolecular condensates. We now know that malfunctioning condensates can cause diseases like Alzheimer’s, Parkinson’s, and cancer. Yet, we do not understand how condensates become malfunctioning and how healthy cells control them. Some challenges in understanding condensate dynamics are that cells are heterogeneous, have complex material properties, and exhibit significant thermal fluctuations. Biological cells are also alive and use fuel molecules to control processes actively. I recently showed that active chemical reactions could generally affect the dynamics of droplets. However, it is unclear how such active droplets behave in the complex environments inside cells.

EmulSim will study how cells control biomolecular condensates and provide a novel integrated simulation method incorporating relevant processes on all length scales. On the scale of individual droplets, I will investigate the influence of driven reactions and elastic material properties of droplets. On the cellular scale, I will study the effect of the elastic cytoskeleton and the presence of multiple compartments. For each of these processes, I will derive experimentally verified models using examples of relevant biological processes, including cell division, chromatin organization, and signaling. Combining the physical theories for these critical processes will culminate in an agent-based model describing a collection of droplets, ultimately also including number fluctuations. This novel simulation framework will model biomolecular condensates in their cellular environment. Taken together, EmulSim will propel our understanding of biomolecular condensates and lay the ground for the development of novel therapies in medicine.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-COG

See all projects funded under this call

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 998 334,00
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 998 334,00

Beneficiaries (1)

My booklet 0 0