Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Debiasing the uncertainties of climate stabilization ensembles

Project description

Robust climate mitigation strategies against disruptive uncertainties

Climate change strategies need to be resilient to disruptive scientific and political uncertainties. Mathematical models can help identify robust courses of action, but computational and epistemic constraints limit their predictive capacity. The EU-funded EUNICE project aims to quantify and analyse uncertainties in the stabilisation pathways consistent with climate stabilisation. Researchers will use machine learning and simulations to explore a vast range of scenarios extending into the deep future. EUNICE will help identify robust strategies to reduce emissions and deal with abrupt climate change, reconciling long-term predictions with the fast-changing political and technological landscape of climate policy.

Objective

Mathematical models have become central tools in global environmental assessments. To serve society well, climate change stabilization assessments need to capture the uncertainties of the deep future, be statistically sound and track near-term disruptions. Up to now, conceptual, computational and data constraints have limited the quantification of uncertainties of climate stabilization pathways to a narrow set, focused on the current century. The statistical interpretation of scenarios generated by multi-model ensembles is problematic due to availability biases and model dependencies. Scenario plausibility assessments are scant. Simplified, single-objective decision criteria frameworks are used to translate decarbonization uncertainties into decision rules whose understanding is not validated.

EUNICE aims to transform the methodological and experimental foundations of model-based climate assessments through quantification and debiasing of uncertainties in climate stabilization pathways. Our approach is threefold: construct, consolidate and convert. We first apply simulation and statistical methods for extending scenarios into the deep future (beyond the current century and status quo), quantifying and attributing deep uncertainties. We consolidate model ensembles through machine learning and human ingenuity to eliminate statistical biases, pin down near-term correlates of long-term targets, and identify early signals of scenario plausibility through prediction polls. Finally, we use decision-theoretic methods to convert model-generated maps of the future into resilient recommendations and experimentally test how to communicate them effectively. By advancing the state of the art in mathematical modelling, statistics, and behavioural decision-making, we strengthen the scientific basis of climate assessments, such as those of the IPCC. The approach and insights of EUNICE can be applied to other high-stakes environmental, social and technological evaluations.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-COG

See all projects funded under this call

Host institution

POLITECNICO DI MILANO
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 730 000,00
Address
PIAZZA LEONARDO DA VINCI 32
20133 Milano
Italy

See on map

Region
Nord-Ovest Lombardia Milano
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 995 000,00

Beneficiaries (2)

My booklet 0 0