Skip to main content

Translational optoelectronic control of cardiac rhythm in atrial fibrillation


It’s my conviction that, one day, we will enable the human heart to terminate its own rhythm disturbances and thereby restore its normal rhythm at any place and time. Such acute restoration of cardiac rhythm would not be based on traumatizing electric shocks, but on generation of bioelectricity by the affected heart itself. In order to explore this paradigm-changing approach for ambulatory shock-free control of cardiac rhythm, I will integrate the unique advances of genetic engineering, computer modelling, tissue engineering and micro-optoelectronics. To determine the advanced and translational potential of such optoelectronic heart rhythm control, the most prevalent cardiac arrhythmia will be targeted, atrial fibrillation (AF).
To this purpose, we will first engineer human atrium-sized 3D models of AF from fully functional conditionally immortalized human atrial cardiomyocytes expressing light-gated ion channels. To realize and explore optoelectronic rhythm control in these models, customized multi-electrode-LED arrays (MELAs) will be integrated to gain full control over bioelectricity generation by precisely tailored illumination. Such illumination will be accomplished by a modular interactive optoelectronic system allowing continuous, accurate and realtime monitoring-based activation of specific LEDs in the MELAs. Insights from these studies will guide the application of this approach in pig models of AF to determine its feasibility, safety and therapeutic implications. From design to interpretation, all these studies will be supported by advanced computer simulations to realize an iterative process of optimization for maximum project outcome.
Establishing translational optoelectronic control of cardiac rhythm is expected to break new ground by revealing unique novel insights into AF mechanisms and management. This project could thus provide distinctively innovative therapeutic options, while generating novel tools and concepts in medical research and care.


Net EU contribution
€ 1 999 999,00
Albinusdreef 2
2333 ZA Leiden

See on map

West-Nederland Zuid-Holland Agglomeratie Leiden en Bollenstreek
Activity type
Higher or Secondary Education Establishments
Other funding
€ 1 999 999,00