Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Bringing molecular photomagnets to light - achieving magnets through visible light excitation at room temperature

Project description

Accessible and practical photomagnetism with visible light and at room temperature

Magnetism is at the heart of today’s magnetic memory applications, including high-density magnetic recording and magnetic random access memory. Ferromagnetism, a property allowing magnetisation states to be maintained for long periods of time, and ferromagnetic switching are the enablers. Ferromagnetic switching can be accomplished in several ways. Funded by the European Research Council, the LUX-INVENTA project will harness photomagnetic materials, or photomagnets, to enable ferromagnetic switching with ultimately renewable solar photons. Current photomagnets remain in the laboratory because they require very low operating temperatures. LUX-INVENTA will overcome this barrier with novel room-temperature molecular photomagnets thanks to enhanced understanding of the processes occurring during photon absorption by photomagnetic chromophores.

Objective

Visible light provided by the Sun is the cleanest energy source one could ever imagine. Harvesting it is crucial for further development of science and technology as well as for reducing the ecological footprint of humanity. The efficient use of the visible spectrum of the Sun can take many forms and the direct photoexcitation of molecules resulting in a dramatic magnetization change - the so called photomagnetic effect - is one of them. In other words, sunlight photons could write, read and erase magnetic states of photomagnets. Photomagnets can be designed and prepared via a bottom-up modular approach using low-energy preparation methods developed by coordination, organometallic chemistry, supramolecular chemistry and crystal engineering with the support from physical and computational sciences. Photomagnets belong to the class of smart multifunctional molecular materials that become paramagnetic, ferromagnetic or simply change their magnetic properties upon illumination - a feature that is hardly accessible in conventional magnetic solids - metal alloys and oxides. Currently known photomagnets are merely laboratory curiosities due to extremely low operation temperatures below the boiling point of nitrogen (-196?C). Hence, the overarching goal of LUX-INVENTA is the discovery of room temperature (RT) photomagnets that would show light-induced ON/OFF ferromagnetic switching under normal conditions. This goal will be pursued alongside the deep understanding of the processes occurring during the absorption of a photon by photomagnetic chromophores - the molecular components responsible for the photomagnetic effect. The proposed research focuses on (i) the design and synthesis of novel photomagnetic chromophores, (ii) investigation of the mechanism of the photomagnetic switching and (iii) preparation of RT photomagnets by a rational incorporation of the photomagnetic chromophores in the structure of coordination polymers and metal-organic frameworks

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2021-COG

See all projects funded under this call

Host institution

UNIWERSYTET JAGIELLONSKI
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 751 250,00
Address
UL GOLEBIA 24
31-007 KRAKOW
Poland

See on map

Region
Makroregion południowy Małopolskie Miasto Kraków
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 751 250,00

Beneficiaries (1)

My booklet 0 0