Skip to main content

Retinal Mesh Optoelectronics

Objective

Visual sense is vital for all of us. Blindness has severe negative psychological, social, and economical consequences, and degeneration of photoreceptors is a leading cause of it. Photovoltaic retina implants are the current electronic solution to restore vision loss due to photoreceptor degeneration. Since the state-of-the-art implants are based on photodiodes, which face challenges in terms of miniaturization, efficiency, and compatibility with mechanical and structural properties of the retina, artificial vision still falls short to overcome the legal blindness level. We propose a novel concept of Retinal Mesh Optoelectronics that will simultaneously satisfy (a) high-pixel density for high visual acuity, (b) conformability to match the natural curvature of the retina for optimal vision quality, (c) flexibility for coverage of a large area of the retina for a wide field of view, (d) seamless integration to keep the remaining healthy photoreceptors intact, (e) biocompatibility, (f) usage of safe capacitive current, (g) injectability and (h) removability.

Toward this aim, we will initially develop efficient, thin, and cellular-sized photovoltaic neural interfaces based on quantum dots and nanowires. For that, non-toxic quantum dots that have strong light absorption at near-infrared will be synergized with the nanowires that have unique light-trapping and high surface area for efficient photostimulation of neurons. Then, we will translate these devices to porous and flexible tissue-like retinal implants for artificial vision. Starting from the nanomaterial synthesis to optoelectronic device fabrication and bioelectronic mesh formation, this challenging innovation combining nanomaterials, photonics and abiotic-biotic interfaces will be explored from primary neurons up to in-vivo experimental models of photoreceptor degeneration in order to move the results toward clinical application.

Coordinator

KOC UNIVERSITY
Net EU contribution
€ 1 533 730,00
Address
Rumeli Feneri Yolu Sariyer
34450 Istanbul
Türkiye

See on map

Region
İstanbul İstanbul İstanbul
Activity type
Higher or Secondary Education Establishments
Other funding
€ 1 533 730,00

Participants (2)

SORBONNE UNIVERSITE
France
Net EU contribution
€ 437 562,50
Address
21 Rue De L'ecole De Medecine
75006 Paris

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Higher or Secondary Education Establishments
Other funding
€ 437 562,50
Third-party

Legal entity other than a subcontractor which is affiliated or legally linked to a participant. The entity carries out work under the conditions laid down in the Grant Agreement, supplies goods or provides services for the action, but did not sign the Grant Agreement. A third party abides by the rules applicable to its related participant under the Grant Agreement with regard to eligibility of costs and control of expenditure.

INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE
France
Net EU contribution
€ 28 707,50
Address
Rue De Tolbiac 101
75654 Paris

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Other funding
€ 28 707,50