Project description
Tailored catalysts to boost methane activation and conversion into valuable chemicals
The EU-funded ATOMISTIC project is exploring ways of efficiently activating and converting methane – a major component of natural gas – into methanol, a valuable liquid fuel and building block for other useful chemicals. The research team will experiment with new methods of controlling the structure of the electrochemical interface and the catalytically active site to tune reaction selectivity. Tailored materials that trigger methane activation will be designed. Researchers will also investigate the relationship between the catalyst structure, reactivity and selectivity. Project activities could significantly advance chemistry and catalysis, offering sustainable ways to produce valuable chemicals.
Objective
Electrochemical methane activation and direct conversion to methanol is highly attractive – a dream reaction that would convert a greenhouse gas into a valuable liquid fuel in a dream device, on-site, and powered by renewable electricity. However, sustainable C-H activation and direct methane to methanol conversion at ambient conditions remain as great fundamental challenges.
My aim with ATOMISTIC is: (i) to develop new methods for electrochemical methane activation and partial oxidation, (ii) to control the structure of the electrochemical interface and the catalytically active site, in order to tune selectivity for the synthesis of valuable fuels and chemicals (such as methanol) from methane, and dimethyl carbonate from methanol. I will use 3 main strategies:
- To establish the ideal structures and electrolytes, using well-defined tailored materials that enable methane activation by its direct adsorption on the electrode material.
- To realise advanced materials that enable the indirect electrochemical activation of methane through the generation of solution phase radicals.
- To tailor the active site at the atomic level for selective methane to methanol and methanol to dimethyl carbonate oxidation reactions on functional materials.
I will elucidate the design principles and unveil the structure-reactivity-selectivity relations and the molecular mechanisms of these reactions as well as the atomic-scale structure of the catalyst materials. I will achieve these ambitious goals by leveraging my work combining the insight from model studies with experiments under realistic conditions to discover new materials. I will combine electrochemical methods, electrochemical scanning probe microscopy, in situ optical spectroscopy, online mass spectrometry and operando synchrotron-based x-ray techniques. The success of ATOMISTIC will result in significant breakthroughs in the fields of chemistry and catalysis, opening up new sustainable ways to produce valuable chemicals.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry inorganic compounds
- natural sciences chemical sciences electrochemistry electrolysis
- natural sciences chemical sciences organic chemistry alcohols
- natural sciences chemical sciences catalysis
- natural sciences chemical sciences organic chemistry aliphatic compounds
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
- Functional Materials
- Methane
- Small Molecule Activation
- Methane Activation
- Surface Modifiers
- Structure Sensitivity
- Advanced Materials
- Direct Methane Oxidation
- Electrochemistry
- Catalysis
- Surface Chemistry
- Electrocatalysis
- Energy Materials
- Electrosynthesis
- Active Site Engineering
- Electrolyte Effects
- Surface-Properties Relations
- Nanomaterials Engineering
- Radical Reactions
- Value-Added Chemicals
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08193 BELLATERRA (BARCELONA)
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.