Skip to main content
European Commission logo print header

Computation driven development of novel vivo-like-DNA-nanotransducers for biomolecules structure identification

Objective

The link between the structural change of a molecule and its function is of fundamental importance since it provides direct insight on mechanism of complex biological processes. Recent years have witnessed noticeable advances of analysis of complex molecular conformations, however the understanding of their conformational dynamics remain a formidable challenge and revolutionary advances are still demanded the analysis of chemical composition and structure of biomolecules, however the understanding of their conformational dynamics remains a formidable challenge, and revolutionary advances are still demanded. Molecular machines, such as the DNA itself, which work at the core of many cellular activities, is able to DNA modify its conformation and to transduce the signal upon binding to specific proteins. In this project, we will develop a DNA-nanotrasducer for real-time detection of conformational changes and the analysis of molecular dynamics as it occurs in-vivo biological processes. The project aims to provide: (i) the development of DNA-nanotransducers that can perform both detection and conformational analysis of molecular dynamics in one functional unit (ii), Use bioinformatics approaches to predict 3D structure of conformational states modelling real time evolution of interacting DNA-NT and proteins, and machine learning (ML) models to directly link the atomistic structure, conformational state, and dynamics (iii) Assess protein-DNA-NT binding by experimental approaches using linear and “on-chip” non-linear spectroscopies for the detection of vibrational signatures of organic molecular systems, to recognize consequent structural changes in the optical signal in real-time, (iv) Describe DNA-NT/protein interactions at the cellular level and 3D analysis of DNA-NT and model proteins, towards drug discovery. These research efforts will provide a foundation for a next generation of DNA-nanotransducers to be used for high-throughput functional molecular structure.

Coordinator

UPPSALA UNIVERSITET
Net EU contribution
€ 627 600,00
Address
VON KRAEMERS ALLE 4
751 05 Uppsala
Sweden

See on map

Region
Östra Sverige Östra Mellansverige Uppsala län
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 627 600,00

Participants (7)