European Commission logo
English English
CORDIS - EU research results
CORDIS

From inspiral to kilonova

Project description

A new computational approach to studying merging neutron stars

The first neutron merger was observed by the LIGO and Virgo detectors in 2017, marking a significant breakthrough for multi-messenger astronomy. The EU-funded INSPIRATION project aims to integrate both gravitational waves and electromagnetic radiation, caused by completely different processes, into a single model. Researchers will apply a novel, recently developed computational methodology: the world-first Lagrangian relativistic hydrodynamics code that also consistently solves Einstein’s equations. The study will provide for the first time detailed physical structures of the long-term physics of the merger and the gravitational wave, neutrino and electromagnetic signals.

Objective

"Recent years have seen the blossoming of multi-messenger astrophysics where gravitational waves, photons and neutrinos provide complementary views on cosmic explosions involving some of the Universe’s most enigmatic objects, namely neutron stars and black holes. The first observation of a neutron star merger via both gravitational waves and, days later, an electromagnetic flash called ""kilonova"" enabled huge scientific leaps forward and was therefore celebrated as ""2017 Breakthrough of the Year"". Multi-messenger astrophysics has an enormous potential to solve many longstanding puzzles such as the origin of the heaviest elements or the nature of the densest matter in the Universe, provided that we understand how the different messengers are physically connected. The gravitational wave and electromagnetic emission stages, however, involve vastly different length and time scales and completely different physical processes. Therefore, currently strong assumptions need to be made how both stages are actually physically connected. On the verge of this transformational era of physics, I propose to calculate for the first time the evolution from the inspiral (milliseconds before the merger) to the time after the kilonova (months later) within a common simulation framework. This will become possible via the novel computational methodology that I have recently developed: the world-wide first Lagrangian hydrodynamics code that also consistently solves Einstein's equations. Compared to conventional Numerical Relativity codes, my new development has major advantages in evolving the merger ejecta which finally cause the kilonova. This project will provide for the first time detailed physical structures of neutron star merger remnants and the first one-to-one mapping between the physics of the merger and the gravitational wave, neutrino and electromagnetic signals. This will present a major breakthrough for both the nuclear astrophysics and the multi-messenger communities."

Host institution

UNIVERSITAET HAMBURG
Net EU contribution
€ 2 499 675,00
Address
MITTELWEG 177
20148 Hamburg
Germany

See on map

Region
Hamburg Hamburg Hamburg
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 2 499 675,00

Beneficiaries (1)