Project description
Superconductivity, super memory
When it comes to superconductivity, what is needed is memories that operate at cryogenic temperatures. Indeed, they can enable more efficient and scalable computing systems beyond today’s reach. The EU-funded SUPERMINT project proposes to build a novel SUPERTRACK cryogenic, high-performance, non-volatile memory that needs very low energy for its operation. A major objective will be to demonstrate the generation and use of triplet supercurrents. Moreover, the project aims to build a novel device to detect magnetic fields and thereby ‘read’ magnetic domain walls for SUPERTRACK.
Objective
Memories that operate at cryogenic temperatures are urgently needed to realize advanced quantum and superconducting computing systems that will enable more efficient and scalable computing systems beyond today’s reach. SUPERMINT proposes to combine the latest advances in superconductivity and spintronics to build a novel SUPERTRACK cryogenic memory, that is high performance, non-volatile and that needs very low energy for its operation. A major objective will be to demonstrate the generation and use of triplet supercurrents, that are dissipation-less, but which carry spin-angular momentum, to move chiral domain walls in magnetic racetracks. A second major objective will be to explore the origin and utilize our recent discovery of a non-reciprocal Josephson diode effect, to build a novel device to detect magnetic fields and thereby “read” magnetic domain walls for SUPERTRACK. These objectives will be met by exploring and designing “manufactured interfaces” or MINTs that combine superconducting and magnetic ultra-thin layers using an advanced complex of thin film deposition systems that I have constructed over the past 5 years. To achieve these objectives, fundamental breakthroughs are needed in the preparation of MINTs with high-quality interfaces. A wide-ranging exploration of MINTs formed from superconducting layers with chiral antiferromagnets, homo-chiral layers of chiral compounds, especially from the B20 family of materials, and geometrical chiral structures will be undertaken. In addition, the concept of obstructed atomic insulators that we have recently developed will be used to identify novel interfaces of insulating materials that are metallic and, thereby, to explore the possibility of making these superconducting by pairing electrons via chiral antiferromagnetic fluctuations in adjacent layers.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Topic(s)
Funding Scheme
HORIZON-ERC - HORIZON ERC GrantsHost institution
80539 Munchen
Germany