Project description
A scalable continuous-variable measurement-based approach to quantum computation
Measurement-based quantum computation was introduced a little more than two decades ago. It relies on the processing of quantum information via iterations of simple measurements on multiple qubits prepared in a highly entangled state, a so-called cluster state. Despite significant progress over the last decade, considerable conceptual and technical challenges remain a barrier to up-scaled versions which can outperform classical computers. The ERC-funded ClusterQ project will build on its demonstrated extremely large 2D cluster states to deliver scalable 3D cluster states. These will be explored and tested to develop a continuous variable measurement-based approach, a novel strategy for fault-tolerant measurement-based quantum computation using surface codes in 3D cluster states.
Objective
Measurement-based quantum computation is a highly promising approach to quantum computing as it simply performs quantum processing directly through the measurements of a multi-partite entangled cluster state and thereby circumvents the complex unitary dynamics of conventional gate-based quantum computers. However, despite significant progress over the last decade in devising new strategies for measurement-based quantum computing, significant conceptual and technical challenges still remain for realizing up-scaled versions that reach the quantum advantage regime where it outperforms classical computation. In ClusterQ we aim to overcome these challenges using continuous variable three-dimensional entangled cluster states. Based on our recent work on generating and exploiting extremely large two-dimensional clusters states we aim to make conceptual breakthroughs along three different directions. First, we deterministically generate highly scalable three-dimensional cluster states of different topological structures, and explore their many-body behaviour and usefulness for quantum computing. Next, we use the three-dimensional cluster states combined with hybrid detection technologies to demonstrate new quantum boson sampling algorithms a near-term quantum computing algorithm allowing for a demonstration of quantum computational supremacy and finally, we explore, theoretically and experimentally, a novel strategy for fault-tolerant measurement-based quantum computation using surface-codes in 3D cluster states. ClusterQ aims to position the continuous variable measurement-based approach to quantum information processing in the field of front-running candidates for NISQ (noisy, intermediate-scale quantum) computing and, in the longer term, fault-tolerant quantum computing.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences quantum physics quantum optics
- natural sciences computer and information sciences data science data processing
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2800 KONGENS LYNGBY
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.