Project description
Turning hexagonal boron nitride’s defects into an asset
A single-atom thick layer of hexagonal boron nitride (hBN) is like that of graphene. It is also called “white graphene" because it has a honeycomb arrangement of atoms and appears transparent. Currently, the most appealing application of hBN is the formation of van der Waals (vdW) heterostructures - artificial stacks of layers of different materials. Recent advances have been made in the creation of spin-carrying intrinsic defects in hBN. Such spin defects can be used as intrinsic sensors to probe the surrounding environment for local strains, pressure, temperature and magnetic fields. The EU-funded BoNi-SENS project aims to deterministically create and manipulate spin defects using high-frequency pulses and explore the potential of hBN-based vdW heterostructures for the fabrication of quantum integrated circuits suitable for practical applications.
Objective
The project idea is to implement a new quantum probe based on hexagonal boron nitride (hBN) containing spin defects to study the properties of artificially stacked two-dimensional (2D) materials and devices. The essential building blocks of such van der Waals (vdW) heterostructures are the quantum defects in hBN recently discovered by the PI and his team. These intrinsic lattice defects - negatively charged boron vacancies VB - can be optically spin-polarized and coherently manipulated, allowing the read-out of quantum information during the coherence time. Our experimental approach is based on coherent manipulation of the spin state using high-frequency pulse protocols, followed by optical readout to explore the adjacent environment, in particular by studying the local lattice strains, pressure, temperature and magnetic fields. The unique feature of hBN is its non-disturbing chemical and crystallographic compatibility with other vdW materials, which gains a new fundamental functionality with the embedded spin centres and allows sensing in heterostructures serving as a boundary itself. Optical readout will be extended by electrical control of spin and charge states, which is an unexplored area and a major step forward in the development of quantum applications of vdW heterostructures. We focus on i) the enhancement of VB emission and spin resonance contrast by coupling with plasmonic resonators to identify single defects never seen before, ii) the identification of the sources of spin decoherence of these defects, in particular the interaction with other electronic defects and hyperfine-coupled nuclear bath, and their bypassing, and iii) the exploration of semiconducting and magnetic heterostructures and electronic devices based on them. The project aims to establish 2D heterostructures as a flexible platform for new quantum applications based on the optical and electrical control of coherent states and mapping fluctuating external fields on the nanoscale.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2021-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
97070 Wuerzburg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.