Periodic Reporting for period 1 - TwinAIR (Digital Twins Enabled Indoor Air Quality Management for Healthy Living)
Reporting period: 2022-09-01 to 2024-02-29
The project aims to: 1) Establish a Health Hazard Identification evidence-based Framework for classification of sources of exposure/dispersion of chemical and biological indoor air pollution. 2) Assess parameters that affect indoor and outdoor air quality for modelling relationships between these factors. 3) Promote the adoption of modular software & hardware technologies. 4) Detect the synergistic effects of exposures to biogenic particles and chemical substances extracted from indoor environments in an ex vivo 3D human air-liquid interface lung model. 5) Evaluate body burdens resulting from multipollutant and biological indoor exposures and associated health effects. 6) Determine desirable and acceptable IAQ conditions based on the results of risk assessment studies. 7) Enable IAQ management with the development of an intelligent toolset based on the Digital Twins technology. 8) Reach consensus on the best approaches and practices applied and develop guidelines on IAQ related findings and health. 9) Contribute to the EC Open Research Data pilot by encouraging sound data management and following the ethical and security standards.
The impactful project contributions to the programme identified needs include enabling stakeholders to utilize collected to generate valuable results and increase knowledge about chemicals and biological contaminants in the air as well as antimicrobial resistant pathogens. The project will also detect airbone virus particles and inhaled particles related to health effects and will define the health impact of indoor air pollutants and their synergistic effects. Digital twin systems will be adopted and a behavioral change for a greener transition will be supported through reducing air pollution and achieving zero-pollution to zero-increase in energy. The ultrafine particles exposure will be assessed and the behavioral attributes and health impact will be correlated.
The scale and significance of the project impacts are:
Impact 1-Health burden related to IAQ: Scale (EU population), Significance (Addition of important epidemiological information)
Impact 2-Established associations between IAQ and respiratory symptoms: Scale (TwinAir cohort (N=900) but can be extrapolated to population level), Significance (Addition of important epidemiological information in the correlation of IAQ data)
Impact 3-Digital IAQ characterization of construction materials: Scale (Digitized buildings), Significance (Reduction of Sick Building Syndrome symptoms)
Impact 4-CFDs and Human DTs for indoor hot-spots identification: Scale (Residencies and hospitals), Significance (Reduce illnesses and symptoms with an identified causative agent related to exposure to poor air quality in buildings)
Impact 5-Reduction in indoor air pollutants concentrations: Scale (European population), Significance (Decrease PM2.5 resulting in a less risk of increased mortality due to COVID19, 125,000 deaths annual saving, 20-50% reduction in health risks, 30% reduction of air pollution costs for Europeans)
Impact 6-Knowledge about SARS-COV-2 presence and survival indoors: Scale (Public buildings, schools, hospitals, residencies), Significance (Identification of direct & indirect sources of viral pollutants in each pilot)
Impact 7-Increase IAQ impacts awareness: Scale (Residencies, schools and offices in high-income countries), Significance (Increase of population meeting guidelines from 44 to 85%)
Impact 8-Productivity increase: Scale (Workplaces), Significance (5525€ increase in productivity per employee/per year)
TwinAIR includes social sciences and humanities in the process to understand the citizen behaviour and use those insights in the solutions' development, considering that citizens should be engaged to promote the adoption of best air quality systems and practices. The solutions developed consider the users’ sociodemographic aspects, needs, motivations, different personal & social norms and can be replicated in different countries.