Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Imaging data and services for aquatic science

CORDIS provides links to public deliverables and publications of HORIZON projects.

Links to deliverables and publications from FP7 projects, as well as links to some specific result types such as dataset and software, are dynamically retrieved from OpenAIRE .

Deliverables

First Data Management Plan (opens in new window)

The document specifies how project publications and data will be collected, processed, monitored, catalogued, and disseminated during the project lifetime

First Innovation Management and Exploitation Plan (opens in new window)

The document provides a definition of the innovation processes, guidelines and instruments to be used to be followed within the project. This document also specifies activities regarding Key Exploitable Results including aspects such as the definition, value proposition, IP management, exploitation path and activities and adoption.

Best practices for producers and providers of image sets and image analysis application in aquatic sciences (opens in new window)

Based on the lessons/experiences gained during the development of image improvement, alignment and AI analysis applications.

Technical development roadmap updated for the mature AI image analysis use cases (opens in new window)

Technical plan for the development, enhancements, improvement, integration activities for the 5 mature image AI use cases, and user requirements for the generic iMagine AI framework

Policy Brief period 2 (opens in new window)

"The updated version of D1.5 ""Policy Brief period 1"""

Best practices and guideline for developers and providers of AI-based image analytics services (opens in new window)

Good practices, tips, guidance and stage acceptance tests for those who wish to develop and operate AI-based image analytics services with the iMagine AI services.

1st periodical assessment of Imaging VA services (opens in new window)

The report provides assessment and statistics of all the Imaging data and analysis tools services provided under virtual acces

Technical development roadmap for the mature AI image analysis use cases (opens in new window)

Technical plan for the development, enhancements, improvement, integration activities for the 5 mature image AI use cases, and user requirements for the generic iMagine AI framework

Communication, Dissemination and Engagement Updated plan (opens in new window)

This document provides an update on the communication, dissemination and engagement activities and plans as defined in D3.1.

AI application upgrade/deployment, and operation plan (opens in new window)

Plan about the application deployment and operation processes required to deliver the WP3 service outcomes within the WP5 service environments.

EOSC and AI4EU liaison and integration plan (opens in new window)

A FAIR-ness assessment and improvement plan for the iMagine services, and a plan for liaison with and integrating services and activities between iMagine and EOSC and the various AI4EU entities (legal entities, WGs, AGs, projects, etc.

2nd Periodical assessment of AI and Infrastructure services (opens in new window)

The report provides assessment and statistics of all the AI and Infrastructure services provided under virtual access

Policy Brief period 1 (opens in new window)

The document addresses policy and practice with evidence-based recommendations derived from the project's activities and results.

1st Periodical assessment of AI and Infrastructure services (opens in new window)

The report provides assessment and statistics of all the AI and Infrastructure services provided under virtual access

Innovation Management and Exploitation Updated Plan (opens in new window)

The document provides an update of the innovation processes, guidelines and instruments along with the exploitation activities and plans as defined in D3.2. This report also includes an initial business model analysis and sustainability plan.

Business Model analysis and Sustainability Plan (opens in new window)

Provides an analysis on the current status of the market and will also identify alternative business models for sustainability of each thematic services

First Communication, Dissemination and Engagement plan (opens in new window)

The document will provide an in-depth description of how project results, developments and branding will be communicated as well as engagement with the targeted audiences, a clear dissemination strategy, and the description of promotion, consultancy, outreach, training and co-design activities. The document will also provide a dissemination plan.

2nd periodical assessment of Imaging VA services (opens in new window)

The report provides assessment and statistics of all the Imaging data and analysis tools services provided under virtual access.

Publications

TOOLS FOR ECOSYSTEM MONITORING BASED ON FISH DETECTION AND CLASSIFICATION USING DEEP NEURAL NETWORKS

Author(s): Oriol Prat, Pol Baños, Enoc Martinez, Joaquin del Rio
Published in: MARTECH 2024 - Mallorca (Spain), 2024

EVALUATING THE BIOLOGICAL IMPACT OF AN ARTIFICIAL REEF USING DEEP LEARNING TECHNIQUES

Author(s): Pol Baños Castelló, Oriol Prat Bayarri, Enoc Martinez, Joaquin del Rio
Published in: MARTECH 2024 - Mallorca (Spain), 2024

DETECT AND FOLLOW A CUSTOM OBJECT, USING OBSEA UNDERWATER CRAWLER

Author(s): Ahmad Falahzadeh, Daniel Mihai Toma, Marc Nogueras, Enoc Martines, Matias Carandell, Jacopo Aguzzi and Joaquín del Río
Published in: MARTECH 2024 - Mallorca (Spain), 2024

Gaussian Latent Representations for Uncertainty Estimation using Mahalanobis Distance in Deep Classifiers (opens in new window)

Author(s): Aishwarya Venkataramanan, Assia Benbihi, Martin Laviale, Cédric Pradalier
Published in: 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Issue 96, 2024
Publisher: IEEE
DOI: 10.1109/ICCVW60793.2023.00483

AI-based fish detection and classification at OBSEA underwater observatory

Author(s): Oriol Prat Bayarri, Pol Baños Castelló, Enoc Martinez, Joaquin del Rio
Published in: IMDIS 2024 - Bergen (Norway), 2024

Automated identification of seafloor deep species (opens in new window)

Author(s): Tosello Vanessa, Borremans Catherine, Lebeaud Antoine
Published in: 2024
Publisher: Archimer
DOI: 10.13155/101744

iMagine D3.1 Technical development roadmap for the AI image analysis use cases (opens in new window)

Author(s): Valentin Kozlov
Published in: KIT-BIBLIOTEK, 2023
Publisher: KIT
DOI: 10.5281/zenodo.7760413

Usefulness of synthetic datasets for diatom automatic detection using a deep-learning approach (opens in new window)

Author(s): Aishwarya Venkataramanan, Pierre Faure-Giovagnoli, Cyril Regan, David Heudre, Cécile Figus, Philippe Usseglio-Polatera, Cédric Pradalier, Martin Laviale
Published in: Engineering Applications of Artificial Intelligence, Issue 117, 2024, ISSN 0952-1976
Publisher: Elsevier BV
DOI: 10.1016/j.engappai.2022.105594

Deep Learning Based Characterization of Cold-Water Coral Habitat at Central Cantabrian Natura 2000 Sites Using YOLOv8 (opens in new window)

Author(s): Alberto Gayá-Vilar, Alberto Abad-Uribarren, Augusto Rodríguez-Basalo, Pilar Ríos, Javier Cristobo, Elena Prado
Published in: Journal of Marine Science and Engineering, Issue 12, 2024, ISSN 2077-1312
Publisher: MDPI AG
DOI: 10.3390/jmse12091617

iMagine D4.1 Best practices and guideline for developers and providers of AI-based image analytics services (opens in new window)

Author(s): Heredia, Ignacio; Kozlov, Valentin
Published in: KIT-BIBLIOTEK, 2024
Publisher: KIT
DOI: 10.5445/IR/1000167993

iMagine D2.3 EOSC and 'AI on Demand' liaison and integration plan (opens in new window)

Author(s): Gergely Sipos
Published in: IMAGINE, 2023
Publisher: IMAGINE
DOI: 10.5281/zenodo.7793950

Integrating Visual and Semantic Similarity Using Hierarchies for Image Retrieval (opens in new window)

Author(s): Aishwarya Venkataramanan, Martin Laviale, Cédric Pradalier
Published in: Lecture Notes in Computer Science, Computer Vision Systems, 2023
Publisher: Springer Nature Switzerland
DOI: 10.1007/978-3-031-44137-0_35

Searching for OpenAIRE data...

There was an error trying to search data from OpenAIRE

No results available

My booklet 0 0