Objective
Anapoles are nonradiating states of light, in which optical fields are trapped by destructive interference of outgoing radiation. They have recently attracted significant interest due to their potential in resonant nanoscale light confinement, which could be used in lasers, sensors, quantum computers and other areas of light-based research and technology. However, ideal anapoles have never been experimentally achieved, because making them perfectly decoupled from external radiation would prevent their excitation and observation. The proposed project will resolve the above issues. Advanced theoretical modeling tools will be used to design the ideal anapoles that can be excited through second-harmonic generation. In this process, the incident light would illuminate the anapolar nanoresonators and nonlinearly induce local optical fields matching the anapole's excitation at twice the incident light frequency. Second-harmonic optical fields may form configurations that can not be induced through linear interactions with external optical fields, hence allowing these local fields to be fully decoupled from external radiation. These local nonradiating fields will then induce photoluminescence at optical wavelengths detuned from the anapole's resonance. Detecting this photoluminescence will enable probing the anapole excitation. To demonstrate this concept in experiments, resonant photonic samples will be fabricated in the silicon nitride (Si3N4) material platform, integrated with molibdenium disulfide (MoS2) monolayers which can simultaneously support efficient second-harmonic generation and photoluminescence. The samples will be excited by time-controlled ultrashort laser pulses, enabling investigation of the temporal dynamics of the anapole's local optical fields and retrieving their Q factors. Demonstration of the ideal anapoles is an ambitious and challenging goal with breakthrough potential for the research on confined states of light and their possible applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences chemical sciences inorganic chemistry metalloids
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.