Project description
Colour from block copolymer self-assembly
Inspired by nature’s colouration strategy, photonic pigments hold great promise for replacing toxic colourants in the fabrication of sustainable paints, cosmetics, displays and photonic devices. So far, research has focused on amorphous packings of colloidal crystals. However, current methods are limited in their ability to produce these materials at a large scale. Funded by the Marie Skłodowska-Curie Actions programme, the COLOUR project will develop bio-inspired photonic pigments by carefully controlling soft matter assembly on the nanoscale. Known as structural colouration, this approach will leverage the self-assembly of block copolymers in concentric lamellar structures to generate full-spectrum photonic crystals with high reflectivity and angular independence. These structures will be coupled with broadband absorbers to ensure colour purity and vividness.
Objective
Photonic pigments are one of the most exciting topics in optics as they are expected to lead to a pure and brilliant colouration free from chemical- or photo-bleaching, which is a central goal in the future developments of paints, cosmetics, displays, and advanced photonic devices. Till now most efforts have been focused on amorphous packings of colloidal crystals, but limitations of synthesizing large quantities of photonic pigments based on these arrays are only beginning to emerge. Novel materials and approaches are thus necessary and, in this context, COLOUR aims to develop bio-inspired photonic pigments via the combination of structural colouration and light absorption. The key approach is to exploit the 3D self-assembly of block copolymers in concentric lamellar structures to generate full-spectrum photonic crystals with high reflectivity and angular independence, coupling these with broad-band absorbers to ensure colour purity and vividness. Specifically, high-visibility structural colour able to address the limitations of current photonic pigments will be achieved by altering four variables, namely size, blackness, refractive index, and arrangement of the nano-elements. COLOUR will rely on my competencies in polymer processing and characterization and the expertise of the host supervisors Prof. Ullrich Steiner and Prof. Christoph Weder in the domain of soft matter physics, polymer self-assembly, supramolecular polymers and materials science (outgoing phase, Adolphe Merkle Institute, University of Fribourg - Switzerland), and Prof. Davide Comoretto in photonics (incoming phase, Department of Chemistry and Industrial Chemistry, University of Genova – Italy). COLOUR offers me the unique opportunity to acquire technical skills and experiences in several scientific fields that will be crucial to advance my career towards an independent academic position, as well as exposure to a technological problem of significant scientific, societal, and technological impact.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering colors
- natural sciences chemical sciences polymer sciences
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-GF - HORIZON TMA MSCA Postdoctoral Fellowships - Global Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
16126 GENOVA
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.