Objective
Food allergies affect around 26 million of Europeans and 32 million of Americans. The severity of the allergic reaction may vary from less severe symptoms such as hives and digestive problems, to a quickly progressing and potentially life-threatening anaphylactic shock. Nowadays, food allergy is an incurable condition, so the most important preventive measure is the complete abstinence from the allergen. Existing allergen detection methods are slow, cumbersome, costly, and most of them are limited to work in a lab environment.
The RESAS project’s goal is to fabricate a device able to sense extremely low concentrations of food allergens within minutes. This is achieved by combining an ultra-high sensitive biosensor substrate, an integrated optical transducer and an electrical signal processing unit. The proposed kind of sensor on the basis of integrated optics enables small size (5 cm3), high repeatability and instant response, as well as potentially low-cost and mass production. This is achieved thanks to the RoF technology and the signal analysis of the output laser of the SPR in the electrical domain, which reduces instrumentation demands with instant allergen detection and great biosensing sensitivity. Furthermore, the RESAS device has a removable biosensing substrate that can be replaced after use, allowing users to operate RESAS several times and for as many types of food allergens as needed. This approach of interchangeable biosubstrates tackles one of the major limitations of most current biosensing technologies, which can be used only once and are restricted to one type of food allergen.
The RESAS project will significantly impact the food industry, as our food allergen testing method promises to be quick, effective, and inexpensive. This may lead politicians to demand a more rigorous testing regime, greatly improving food safety. Finally, a new class of portable test devices for millions of allergists and end-users will be created.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors biosensors
- medical and health sciences clinical medicine allergology food allergy
- engineering and technology environmental biotechnology biosensing
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering signal processing
- engineering and technology other engineering and technologies food technology food safety
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
38678 CLAUSTHAL ZELLERFELD
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.