Skip to main content
European Commission logo print header

Quantum Chemical Design of Molecular Magnets

Description du projet

Des aimants moléculaires plus efficaces pour alimenter les appareils du futur

Les dispositifs quantiques dépendent d’une nouvelle classe d’aimants à base de molécules. Mais contrairement aux aimants conventionnels, la structure mécanique quantique complexe de ces éléments reste mal comprise. Le projet ezEmbedMagnet, financé par l’UE, cherchera à mieux comprendre les systèmes de grandes molécules magnétiques et à utiliser les connaissances ainsi acquises pour créer de nouveaux aimants moléculaires. Pour ce faire, le projet s’appuiera sur la modélisation computationnelle dans le but de déterminer comment les interactions microscopiques (spin-orbite et Zeeman) contribuent aux propriétés magnétiques macroscopiques. Plus précisément, le projet étudiera l’optimisation d’un aimant monomoléculaire de cobalt(II) ainsi que des atomes de cobalt uniques sur des surfaces de MgO(001) et de Cu(111).

Objectif

A reliable ab initio description of molecular magnets is key to developing a new era of quantum devices that will be more efficient and easier to tune by structural modification of their building units. However, quantum mechanical treatment of such systems is challenging due to their multi-configurational wavefunctions, requiring a well balanced description of their constituent electronic configurations. Furthermore, these systems are often large magnetic molecules or atoms deposited on supports whose models include hundreds of atoms, hampering the application of accurate ab initio methods; yet small energy gaps (from tens to hundreds of wavenumbers) call for quantitative accuracy. The aim of this project is to design new molecular magnets, practical for real-world applications. To this end, I will employ a new and affordable computational strategy that combines accurate equation-of-motion coupled-cluster (EOM-CC) theory on the magnetic center with more approximate density functional theory (DFT) on the remainder, avoiding costly EOM-CC calculations on the full system. I will combine interdisciplinary approaches, EOM-CC-in-DFT for open-shell species and tools computing magnetic properties from ab initio calculations, to determine how microscopic interactions (spin-orbit and Zeeman) contribute to macroscopic magnetic properties and how these are optimized in two model systems: (i) a cobalt(II) single-molecule magnet and (ii) single cobalt atoms on the MgO(001) and Cu(111) surfaces. This project will enable, through collaboration between researchers with complementary expertise, a transfer of knowledge across multiple fields, such as solid-state physics, quantum chemistry, and molecular magnetism. Via research training including a secondment, I will explore new approaches; e.g. modelling metal surfaces, periodic wavefunction theories, and periodic embedding theories, which will be crucial to cultivating my place as an expert in this field.

Coordinateur

KATHOLIEKE UNIVERSITEIT LEUVEN
Contribution nette de l'UE
€ 175 920,00
Adresse
OUDE MARKT 13
3000 Leuven
Belgique

Voir sur la carte

Région
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
Aucune donnée

Partenaires (1)