Objective
State-of-the-art investigations of the hydrodynamic stability of flow fields of industrial significance are limited to time-invariant or time-periodic flows. This is due to the lack of a robust and affordable methodology capable of obtaining the stability and sensitivity information of complex aperiodic and chaotic flows. Ground-breaking theoretical and numerical concepts are necessary to provide new insight into the dynamic behaviour of unsteady flow systems and develop models for their physically founded control.
This project aims to develop a theoretical/numerical methodology that enables the effective study of the stability and the sensitivity of aperiodic and chaotic flow systems of industrial relevance. A new computational tool will be developed to perform finite-time Lyapunov exponent analysis in three-dimensional compressible unsteady flows, which will allow to characterize the perturbations producing chaos in a given flow system. This tool will be combined with a novel computational methodology based on adjoint shadowing techniques, which will enable the study of the sensitivity of aperiodic and chaotic flows to long-term averaged objectives.
The developed tools will be applied to two problems of practical interest in the aerospace industry: the unsteady separated flow in a low-pressure turbine blade and the unsteady flow induced by a real wing undergoing fast variations in the pitching angle. These analyses will allow to extract useful dynamical information about the most relevant coherent structures in the studied flow fields and exploit it to exercise flow control. For the first problem, experimental investigations will also be performed at Purdue Experimental Turbine Aerothermal Laboratory to test flow-control concepts devised during the numerical analyses. For the second problem, the investigations will be performed during a placement at Airbus Defence and Space.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28040 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.