Project description
Adapting bioreactors to use non-polluting hydrogen
The current production of base chemicals is based on non-renewable fossil fuels as a feedstock. Renewable hydrogen would prove an ideal fossil-free energy source; however, this requires both O2-sensitive and O2-dependent reactions to take place in a single reactor, which makes its usage complicated. The EU-funded ReLay project seeks to resolve this by using new biohybrid catalytic microdiscs capable of facilitating both reactions at once. They do this by separating the reaction into distinct layers. The project will use simulations to determine the optimal conditions to create both anaerobic and aerobic domains allowing O2-sensitive and O2-dependent reactions to take place within a single particle. The goal is to make a platform which can be adapted for use in current bioreactors.
Objective
Todays technology for the biocatalytic production of base chemicals is fossil-fuel based. Moving away from non-renewable and carbon-based energy feedstocks towards renewable hydrogen is a key challenge for current chemical processes. However, biocatalysis has yet to see H2 implemented as a energy source, simply because such H2-consuming reactions are sensitive to O2, whereas many enzymatic reactions driving product formation require O2 as a cosubstrate. H2-driven biocatalysis is not realized today on a large scale because of this need for both O2-sensitive and O2-dependent reactions to operate in tandem. The goal of this Marie Skodowska-Curie Postdoctoral Fellowship project is to deliver the theoretical framework and experimental validation for novel biohybrid catalytic microdisks capable of carrying out seemingly incompatible tandem reactions by controlling the spatial separation of reaction layers (ReLay). Driven by both theory and simulation, the optimal conditions will be found to create both anaerobic and aerobic domains allowing O2-sensitive and O2-dependent reactions to take place within a single particle. This will be accomplished by, first, building a reaction-diffusion model and simulation toolbox to establish the theoretical framework of spatially separated reaction layers in these catalytic micodisks. Second, the parameter space will be explored using the model and simulations to find the best performing components and conditions. Finally, these predictions will be validated with an experimental case-study, comparing the expected output from the model with the actual reaction rates and concentrations gradients measured experimentally for an O2-dependent oxyfunctionalization driven by H2 within the catalytic microdisks. These actions will create a universal platform for H2-driven biocatalysis, which can be implemented directly in current bioreactors.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental biotechnology bioremediation bioreactors
- natural sciences chemical sciences catalysis biocatalysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80333 Muenchen
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.