Project description
Enhancing the speed and efficiency of photocatalytic microbots
Microrobots have enormous potential for applications in medicine, healthcare, manufacturing or even search and rescue in collapsed buildings. They turn energy from the surroundings or an external stimulus into motion, performing delicate tasks in very small spaces. Light-driven motion in photocatalytic robots offers the potential to use a renewable energy source while enabling new chemical reactions. However, far from reaching the speed of light, the robots’ motion can be confused with the ordinary Brownian motion of particles. With the support of the Marie Skłodowska-Curie Actions programme, the PLOBOT project will enhance the speed and efficiency of light-driven microbots by harnessing electromagnetic effects for hydrogen generation and degradation of organic waste.
Objective
The 1966 sci-fi film, Fantastic Voyage, portrayed a scientist who miniaturized a submarine to enter his body to remove a blood clot. It is only recently that scientists have been able to assemble microrobots from scratch to autonomously move and perform complex tasks, such as catching and delivering cargo, and/or performing chemical reactions. The bots use energy from their surroundings or from an external stimulus, and turn it into motion. Light-driven motion in photocatalytic robots is exceptionally appealing as it allows actuation and control by using an external free energy source i.e. sun and enhancement of chemical reactions due to two effects: self-generated micro-mixing effect and constant surface refreshment, giving place to new chemical reactions ‘on-the-fly’. Yet, the reported photocatalytic bots up to date are so slow that their speed can be confused with Brownian motion. This project seeks to combine two approaches for the first time to enhance the efficiency and speed of light-driven bots: Lorentz force as an ultrafast motion mechanism and plasmonic effects for bettering light harvesting. A novel system will be introduced in which the robot’s motion based on the magnetohydrodynamic convection effect is triggered by visible light and can pursue desired reactions (degradation of organic wastes and hydrogen generation). By leveraging the host’s fundamental photophysical approach in nanoplasmonic design and my interdisciplinary angle on microrobots and energy field, the results are expected to bring knowledge gain for the microrobot field, and possibly a long-term impact on Europe’s solar technological innovations. The project‘s training comprises transferrable (leadership and communication) and technical skills development (bridging a knowledge gap in photophysics), to advance my career as a future group leader in Europe with an unorthodox research angle combining photo/electrochemistry and microrobots for alternative energy and environmental solutions.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences electrochemistry
- humanities languages and literature literature studies literary genres essays science fiction
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.