Project description
Breakthrough quantum transducers for connecting quantum computers
Quantum microwave-to-optical transducers are critical for networking quantum computers. Funded by the Marie Skłodowska-Curie Actions programme, the Harcotrec project plans to develop an innovative transducer relying on rare-earth crystals that will demonstrate higher efficiency, bandwidth and noise suppression compared to state-of-the-art transducers. In the transducer input, information is encoded in an electric current oscillating at a microwave frequency. This information comes out the same from the output encoded in visible light. Carefully selected crystals will be grown, and their optical, hyperfine and antiferromagnetic resonances will be analysed in cryogenic temperatures. Ultranarrow tuneable lasers and microwave generators coupled with a radiofrequency cavity will provide the optical and microwave fields.
Objective
The rapid progress in the development of quantum computers is accompanied by the demand for devices enable to connect them into a quantum network. These devices are transducers that coherently convert microwave radiation into infrared light and vice versa at the single-photon level. The aim of the project is thus to investigate an innovative transducer scheme based on fully concentrated rare earth crystals with efficiency, bandwidth and suppression of the added noise higher than the current transducers. By exploiting the large non-linear properties of these crystals in the proximity of their sharp electronic and spin transitions, the microwave field will be mixed with an optical laser field to generate a new optical field that will carry the quantum information previously encoded into the microwave field. To achieve this goal, carefully selected crystals will be grown and their optical, hyperfine and antiferromagnetic resonances analyzed at mK cryogenic temperatures. Ultra-narrow tunable lasers and microwave generators coupled with a radiofrequency cavity will provide the optical and microwave fields and the frequency mixing process will be characterized via heterodyne technique. The rare earth crystals performance will be finally assessed towards implementing microwave to optical transduction in the quantum regime.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology radio frequency
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.