Project description
Novel energy source to power industrial redox biocatalysis
Redox enzymes have industrial potential if they are used to provide sustainability in food, fuel, and CO2 conversion. The redox enzymes need a source of energy to power reactions. Their translation into industry requires the addition of cost-increasing electron-providing chemicals, in contrast to natural processes where electrons are transferred from cofactors. Funded by the Marie Skłodowska-Curie Actions programme, the VibroZyme project aims to develop an innovative approach to power redox enzymes using mechanical energy and piezoelectric materials, creating the research field of mechanoredox biocatalysis. By mimicking living system conversion of mechanical stimuli into electrochemical activity, the project will utilise mechanoredox materials to transform vibrational energy from the environment into a supply of electrons to power redox biocatalysis.
Objective
Redox enzymes are a diverse enzyme class with significant industrial potential, improving sustainability in food, fuel and CO2 conversion. However, redox enzymes need a source of energy (electrons) to power their important reactions. While nature employs electrons transferred from cofactors (e.g. NAD(P)H) to drive redox biocatalysis, industry translation requires the addition of sacrificial chemicals, which increases cost, waste, and purification, and impedes scalability. This project aims to develop a new method to power redox enzymes using mechanical energy and piezoelectric materials, establishing a unique research field in mechanoredox biocatalysis. Inspired by natural mechanotransduction, where living systems convert mechanical stimuli into electrochemical activity, I will employ mechanoredox materials to transform ubiquitous vibrational energy from the environment into a sustainable supply of electrons to power redox biocatalysis. I will demonstrate this technology by coupling scalable piezoelectric-polymer composites with formate dehydrogenase (FDH) as a model enzyme, for vibration-powered CO2 reduction.
First, I will design, construct and optimise piezo-polymer beads and films that generate a mechanoredox potential matched to redox enzymes. Next, I will couple these materials with FDH to catalyse CO2 reduction using vibrations from pumping as mechanical stimulus. Two routes will be explored, namely mediated and direct energy transfer (MET and DET) from the stimulated mechanoredox materials, culminating in a platform technology for exploiting redox enzymes in industry. I will gain extensive scientific and transferable skills from the team of Prof. Anne Meyer at DTU and my industry partner Novozymes to support my career development, including enzyme production and immobilization, and commercialisation. VibroZyme embodies a new strategy to enhance the scalability, sustainability and productivity of redox biomanufacturing, with immense commercial potential.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering composites
- social sciences economics and business economics production economics productivity
- natural sciences chemical sciences catalysis biocatalysis
- engineering and technology environmental engineering energy and fuels
- natural sciences biological sciences biochemistry biomolecules proteins enzymes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2021-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2800 KONGENS LYNGBY
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.