Project description
Innovative approach overcomes barriers to trapping molecular hydrogen
Consisting of just two protons and two electrons, molecular hydrogen is the simplest molecule found in nature. Its properties can be very accurately calculated from quantum theory laws, but the molecule is difficult to measure experimentally owing to its very weak interactions with electromagnetic fields. In a first, the ERC-funded H2TRAP project will seek to trap molecular hydrogen by using superconducting magnetic traps and ultrahigh-power optical dipole traps. The use of cold and trapped hydrogen samples will allow hydrogen properties to be measured with a higher degree of precision, by at least two orders of magnitude, than previous research efforts.
Objective
Due to its simplicity, H2 constitutes a perfect tool for testing fundamental physics: testing quantum electrodynamics, determining fundamental constants, or searching for new physics beyond the Standard Model. H2 has a huge advantage over the other simple calculable systems (such as H, He, or HD+) of having a set of a few hundred ultralong living rovibrational states, which implies the ultimate limit for testing fundamental physics with H2 at a relative accuracy level of 10^-24. The present experiments are far from exploring this huge potential. The main reason for this is that H2 in its ground electronic state extremely weakly interacts with electric and magnetic fields; hence, H2 is not amenable to standard techniques of molecule slowing, cooling, and trapping. In this project, we propose a completely new approach for H2 spectroscopy. For the first time, we will trap a cold sample of H2. We will consider two approaches: superconducting magnetic trap and ultrahigh-power optical dipole trap (with trap depths of the order of 1 mK). T = 5 K will be achieved with a standard refrigeration technique, and the trap will be filled in situ with the 5 K thermal distribution of the H2 sample. Presently, there is no technology available to cool down the H2 gas sample from 5 K to 1 mK; hence, the only option is to directly capture the coldest fraction. The majority of the molecules that initially fill the trap zone will be lost. However, the high initial H2 density will allow us to trap up to 600 000 molecules. We will do infrared-ultraviolet double resonance H2 spectroscopy referenced to the optical frequency comb and primary frequency standard. The ability to do spectroscopy using a cold and trapped sample will eliminate the sources of uncertainty that have limited previous best approaches and will allow us to improve the accuracy by at least two orders of magnitude. The H2 traps will open up a new way for further long-term progress in the metrology of H2 rovibrational lines.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering thermodynamic engineering
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
87-100 TORUN
Poland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.