Project description
Exploring how quantum particles cross seemingly impossible physical barriers in 3D
In quantum mechanics, electrons can be liberated through atomic and molecular potentials which are bent by strong laser pulses. This process is known as tunnel ionisation and has no classical analogon. The electric field of the laser pulses was hitherto restricted to a 1D line or a 2D plane. During the ERC-funded 3DTunneling project, an experimental setup that can synthesise 3D light fields will be built, and a novel 3D detection system to study tunnel ionisation from atoms, diatomic molecules and chiral molecules will be developed. This novel 3D-light/3D-detection platform will increase the sensitivity of strong-field tunnelling to the 3D properties of atomic and molecular orbitals with sub-nanometre and attosecond resolution.
Objective
Tunneling is a non-resonant, quantum mechanical process without any classical analog. The electric field of a strong laser pulse can bend atomic and molecular potentials such that an electron can be liberated via tunneling. This allows for probing properties of atomic and molecular orbitals with subnanometer and attosecond resolution (like a tunneling microscopes tip probes properties of the investigated surface). So far, the electric field vector is restricted to a one-dimensional line (1D, e.g. linearly polarized light) or a two-dimensional plane (2D, e.g. circularly polarized light). Since tunneling acts like a filter to the same 1D or 2D subspace in position space, this limits the sensitivity to the 3D structure of the probed orbital. I propose to build an experimental setup that can synthesize 3-dimensional (3D) light fields with peak intensities of up to 1015 W/cm2. 3D light fields will significantly increase the sensitivity of strong field tunneling to the 3D properties of the bound electronic wave function. Further, non-adiabatic dynamics during tunneling and subsequent acceleration, recollision, or recapture of the electronic wave packet will be driven by the time-dependent 3D field as well. This will e.g. allow for the creation of chiral electron distributions in atoms (i.e. chiral atoms), selectively tunnel ionize one enantiomer of a racemic mixture of chiral molecules and enable a new type of pump-probe experiments. The capability to generate 3D light fields will be matched with a 3D detection system, which measures 3D electron momenta in coincidence with ionic fragments. My team and I will use this novel 3D-light-3D-detection-platform to investigate tunnel ionization from atoms, diatomic molecules, and chiral molecules. I anticipate that the proposed experiments will give rise to a new class of experiments on light-matter interaction and provide ground-breaking insight regarding the quantum mechanical process of tunneling itself.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences optics microscopy
- natural sciences physical sciences optics laser physics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
60323 FRANKFURT AM MAIN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.