Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Tailoring lattice oxygen and photo-induced polarons to control reaction mechanisms and boost catalytic activity

Project description

Advanced approaches for greater control of photocatalytic reactions

Sunlight and water can be harnessed to produce solar fuels and chemicals with the use of special devices called photoelectrochemical cells. A big issue lies with elucidating the reactions at heterogeneous interfaces – the presence of defects and lattice distortions affecting catalysis have limited our ability to control reactivity. Funded by the European Research Council, the PhotoDefect project could help fill in this knowledge gap. By applying operando spectroscopy and electrochemistry with lasers, researchers aim to study the oxidation reactions at metal oxide photoelectrodes. Detecting in situ the formation of reactive intermediates, defects and catalytic products, PhotoDefect will reveal new ways to tune the yield and selectivity of photoelectrochemical reactions.

Objective

Photoelectrochemistry can revolutionise our way of life by harnessing sunlight to produce renewable fuels and chemicals and by helping us preserve the planet for future generations. However, enhancing the efficiency and selectivity of photoelectrochemical (PEC) reactions remains a challenge, especially for the photo-transformation of organic compounds required in industry. The problem stems from the difficulty of characterising the catalytic interface of heterogenous systems under working conditions. This prevents us from elucidating the reaction mechanisms and, so far, has dramatically limited our ability to control reactivity in a similar way to what can be achieved with homogeneous molecular catalysis. A particular challenge of solids is that they are prone to form defects during catalysis. However, how defects and lattice distortions impact the steps of the catalytic cycle remains unknown. Such mechanistic understanding is critical to redesign new materials and boost catalytic efficiencies.

PhotoDefect will address this gap in our understanding by applying new methodologies to the study of oxidation reactions at metal oxide photoelectrodes. Our approach is to combine operando mass spectrometry and electrochemistry with optical and X-ray lasers to provide unprecedented insights into the polarised interface. Our strategy is to detect, in situ, the formation of reactive intermediates, defects and catalytic products in order to map out reaction mechanisms and establish ways to control them on demand.

We will use cutting-edge methodologies to establish whether defects and photoinduced structural distortions or polarons participate in the steps of the catalytic mechanisms. Most importantly, if successful, our results will reveal new ways to tune the yield and selectivity of PEC reactions by controlling defects and polarons. These results will influence the way we synthesise PEC materials and the theoretical models we use to understand reaction mechanisms.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
This project's classification has been validated by the project's team.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-STG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 895 956,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 895 956,00

Beneficiaries (1)

My booklet 0 0