Skip to main content

3D diamond growth

Objective

Diamond, due its outstanding properties, is a desired material to coat various objects for medical, bioelectronics, optical, aerospace, marine and other applications. However, achieving uniform coatings on complex-shaped 3D objects is still a not overcome challenge due to 2D nature of current deposition techniques. The aim of this project is to develop a new diamond growth technology, which will allow diamond synthesis in 3D and accelerate the widespread use of diamond-based materials in new research fields and industry.
The technical challenge of diamond growth in 3D will be addressed by leveraging on two ground-breaking ideas: 1) exploiting the unique properties of metamaterials and fractals to achieve uniform plasma excitation in 3D; 2) using new protonuclei-enhanced gas phase diamond nucleation pathways to overcome the nucleation barrier. The diamond growth will be achieved by microwave plasma chemical vapor deposition technique in a unique deposition system. The plasma in the system will be excited by traveling surface waves in 3D using fractal apertures on composite right/left-handed materials with infinite wavelength propagation property. As a result, plasma is expected to be distributed homogeneously in space, which is a necessary condition to achieve uniform diamond synthesis on 3D objects. The growth of diamond is expected to proceed via nonclassical protonuclei-enhanced gas phase nucleation pathway proposed to significantly increase diamond nucleation rate and allow diamond growth that is independent on a substrate temperature.
The use of metamaterials with fractal apertures for diamond synthesis via nonclassical gas phase nucleation pathway is an absolute novelty, which will address fundamental questions about diamond growth in a gas phase. Beyond that, this new technology could enable other researchers to explore new applications of diamond on temperature sensitive materials, which require good electronic, chemical, or surface tribological properties.

Coordinator

UNIVERSITETET I BERGEN
Net EU contribution
€ 1 500 000,00
Address
Museplassen 1
5020 Bergen
Norway

See on map

Region
Norge Vestlandet Vestland
Activity type
Higher or Secondary Education Establishments
Other funding
€ 0,00