European Commission logo
English English
CORDIS - EU research results
CORDIS

Ultra-efficient and stable perovskite tandem solar cells for extreme conditions in space

Objective

INPERSPACE focuses on an emerging but extremely urgent challenge in Europe: meeting the sharply increasing demand for space-grade photovoltaics (PVs) due to the recent privatization of the space industry. Today’s modern III–V/Ge-based PVs fall short of answering this demand as the new space era requires cost-effective and high-speed processable PVs, on top of the existing high power density requirement. All-perovskite tandem PVs are excellent candidates fulfilling all these requirements. However, their stability must be ensured under ‘synergistic extremes’ from ground to orbit deployment such as high vacuum, particle radiation, high ultraviolet light, frequent temperature cycles (in orbit), vibrations (in flight), and humidity (before lift-off). Unless these concerns are addressed, we risk substantially underutilizing the emerging space technologies in the new space era.
INPERSPACE aims to realize this with two core pillars: 1) creating ultra-efficient (>30% at space spectrum) all-perovskite tandem solar cells on lightweight substrates; 2) investigating the fundamental failure modes of these devices under synergistic stressors typical of the extreme space environment, focusing on combinations of stressors with thermal cycling as the most decisive, yet frequently overlooked, stressor for stability in space. I will achieve these goals by i) creating new perovskite compositions to eliminate the performance losses, ii) elucidating the origin of the instability of the devices from nano to macroscale and module level, iii) implementing groundbreaking methodologies to solve stability issues.
INPERSPACE is an exceptionally timely and exciting research project. The created knowledge will immediately revolutionize the space PV market and set the agenda in other domains such as perovskite-based terrestrial PVs and other optoelectronic devices. The work realises the promise of a versatile PV technology envisaged to be part of life-changing technologies for billions of people.

Host institution

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Net EU contribution
€ 2 500 000,00
Address
GESCHWISTER SCHOLL PLATZ 1
80539 Muenchen
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 2 500 000,00

Beneficiaries (2)