Project description
Controlling interfacial ion transport with microscopic precision
Understanding and controlling the behaviours of ions at interfaces is of fundamental importance to many energy technologies. Unlike for electrons, no versatile technique exists that controls the free energy of a specific ion directly and in isolation. Bipolar membranes (BPMs) are an excellent test bed for the study of ion behaviours at interfaces. They isolate water dissociation spatially at a junction between two electrically isolating but ionically conducting polymers. However, current macroscopic BPMs do not provide 3D resolution of the ionic events. Funded by the European Research Council, the ORION project will scale down the ion-selective contacts of the BPM to develop a novel technique, "ionomer pipette microscopy," to control the free energy of specific ions with microscopic precision.
Objective
Electrochemistry provides direct control over the electron free energy and thus a path to electrically probe and drive chemical reactions. In strong contrast, no versatile technique exists that controls the free energy of a specific ion directly and in isolation. This has led to poor understanding of interfacial ionics. Take for example water dissociation , which is of key relevance for many energy technologies, such as for producing green H2 in alkaline conditions or bipolar membranes (BPMs) that generate acid and base using (renewable) electricity in electrodialysis. BPMs are unique, because they isolate water dissociation spatially at a junction between two electrically-isolating, but ionically-conducting polymers. However, macroscopic BPMs do not provide x-y-z resolution. These geometric constraints limit our scientific understanding about the fundamental underpinnings of WD. It is not still clearly understood what causes the kinetic barriers of WD at heterogeneous interfaces, let alone the influence of the catalyst’s surface structures or local electrostatics.
In Orion, I want to scale down the ion-selective contacts of the BPM and develop “ionomer pipette microscopy”. By forming and controlling a microscopic BPM junction, we will resolve and study WD activity as a function of crystal facets, metal oxide clusters and bias-dependent surface speciation. In general, water dissociation serves us as ionic test reaction to study the impact and link between local electrostatics and local acid-base chemistry, which is fundamentally important for interfacial ionics in general. More broadly, developing a table-top setup to control the free energy of specific ions with microscopic precision could have tremendous impact across the disciplines. Example include interfacial ion transport in solid-state electrochemical systems, (de)hydrogenation in organic chemistry and enzyme function, proton gradients and action potentials in biochemistry.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry
- natural sciences chemical sciences electrochemistry
- engineering and technology chemical engineering separation technologies desalination electrodialysis
- natural sciences chemical sciences polymer sciences
- natural sciences physical sciences optics microscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.