Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Solution attosecond chemistry

Project description

Attosecond chemistry of core-excited states in solution

Thanks to attosecond spectroscopy, the core-excited states (CES) of molecular core-shell atoms excited by X-ray photons can now be observed in the time domain. These states govern the line shapes (the electromagnetic spectrum near a spectral line) in all X-ray spectroscopies. CES time evolution in solvated biomolecules provides information about solute-solvent interactions, local symmetries and chiral fields. The consortium of the ERC-funded SATTOC project will use its unparalleled laser technique to manipulate CES. They will produce line shapes that reveal core-level splitting in solvated amino acids and metalloproteins, enabling the team to see the binding geometry of ligands with unprecedented accuracy. They will also study the chiral field near target atoms of biological samples.

Objective

X-ray photons carry sufficient energy to interact with molecular core-shells electrons. Accessible for decades in the energy domain, the resulting core-excited states (CES) can now be observed in the time domain using attosecond (10-18 s) spectroscopy. These states are important as they govern the lineshapes in all x-ray spectroscopies. Here, we propose to first investigate and then manipulate the CES time evolution in solvated biomolecules in order to reveal key chemical information i.e. solute-solvent interactions, local symmetries and
chiral fields.
CES lifetimes dictate the emission of secondary electrons active in radiotherapy. By observing the effect of solute-solvent interactions on CES we will be able to achieve a better understanding of the first molecular mechanisms of radiotherapy.
CES are also a subtle probe of the absorbing atoms bonding environment. CES line splittings are lost in conventional x-ray spectroscopy due to homogenous broadening. We developed a technique based on the laser manipulation of CES capable of producing lineshapes up to an order of magnitude below the spectroscopys lifetime broadening and revealing core-level splitting. We will employ this approach to observe core-level splitting in solvated amino acids and metalloproteins and will use this new information to reveal the binding geometry of ligands with unprecedented accuracy.
Finally, we will show how one can use nonlinear optics with attosecond pulses to reveal the chirality of the field surrounding sulphur and phosphorus atoms in biological samples. X-ray excitation localizes the point of view on the chiral field to a single atom. This perspective will allow us to examine the chiral landscape near the target atom. Here, chirality due to a single chiral centre will be probed in L-cysteine while the chirality due to the macromolecular arrangement will be measured in DNA helixes.
Our proposal brings attoscience techniques in the investigation field of large solvated systems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-STG

See all projects funded under this call

Host institution

COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 325 590,00
Address
RUE LEBLANC 25
75015 Paris
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 325 590,00

Beneficiaries (1)

My booklet 0 0