Project description
Attosecond chemistry of core-excited states in solution
Thanks to attosecond spectroscopy, the core-excited states (CES) of molecular core-shell atoms excited by X-ray photons can now be observed in the time domain. These states govern the line shapes (the electromagnetic spectrum near a spectral line) in all X-ray spectroscopies. CES time evolution in solvated biomolecules provides information about solute-solvent interactions, local symmetries and chiral fields. The consortium of the ERC-funded SATTOC project will use its unparalleled laser technique to manipulate CES. They will produce line shapes that reveal core-level splitting in solvated amino acids and metalloproteins, enabling the team to see the binding geometry of ligands with unprecedented accuracy. They will also study the chiral field near target atoms of biological samples.
Objective
X-ray photons carry sufficient energy to interact with molecular core-shells electrons. Accessible for decades in the energy domain, the resulting core-excited states (CES) can now be observed in the time domain using attosecond (10-18 s) spectroscopy. These states are important as they govern the lineshapes in all x-ray spectroscopies. Here, we propose to first investigate and then manipulate the CES time evolution in solvated biomolecules in order to reveal key chemical information i.e. solute-solvent interactions, local symmetries and
chiral fields.
CES lifetimes dictate the emission of secondary electrons active in radiotherapy. By observing the effect of solute-solvent interactions on CES we will be able to achieve a better understanding of the first molecular mechanisms of radiotherapy.
CES are also a subtle probe of the absorbing atoms bonding environment. CES line splittings are lost in conventional x-ray spectroscopy due to homogenous broadening. We developed a technique based on the laser manipulation of CES capable of producing lineshapes up to an order of magnitude below the spectroscopys lifetime broadening and revealing core-level splitting. We will employ this approach to observe core-level splitting in solvated amino acids and metalloproteins and will use this new information to reveal the binding geometry of ligands with unprecedented accuracy.
Finally, we will show how one can use nonlinear optics with attosecond pulses to reveal the chirality of the field surrounding sulphur and phosphorus atoms in biological samples. X-ray excitation localizes the point of view on the chiral field to a single atom. This perspective will allow us to examine the chiral landscape near the target atom. Here, chirality due to a single chiral centre will be probed in L-cysteine while the chirality due to the macromolecular arrangement will be measured in DNA helixes.
Our proposal brings attoscience techniques in the investigation field of large solvated systems.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules
- natural sciences mathematics pure mathematics geometry
- natural sciences physical sciences optics laser physics
- natural sciences physical sciences theoretical physics particle physics photons
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75015 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.