Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Haptic sensing skin for biomedical applications with soft magnetorheological elastomers

Project description

Innovative materials replace touch in biomedical devices

Our fingertips have the inherent ability to translate pressure-associated signals into touch or haptic sense. Conventional surgeries require the haptic sense of surgeons but in robot-assisted operations, this direct contact is lost. To address this issue, the ERC-funded MagnetoSense project proposes to develop a novel haptic sensor using magnetorheological elastomer (MRE) materials. MREs are soft and consist of particles that can be magnetised and change shape in the presence of an external magnetic field. Researchers aim to achieve the reverse: to use MRE deformation upon encounter with an object to trigger a magnetic field change, measurable by a sensor. This innovation is expected to find many applications in the biomedical and robotics field.

Objective

Sensorial and tacSensorial and tactile information represent the base of all surgical procedures in medicine. The vision sense has been and continues to be developed extensively by use of micro-cameras, MRI, X-rays and many others. Nonetheless, in many cases, the vision is not enough. The touch sense is necessary to identify the stiffness of the underlying organ or tissue and press more or less to perform a cut, remove a tumor or even move a catheter inside a curved vain. This stiffness is transmitted to the finger of the surgeon as a pressure-deformation information. This haptic sense is present naturally in our fingertips. Nevertheless, with the recent development of non-invasive techniques, the surgeon operates robotic devices that deliver optical information via a screen but loses all haptic information since his/her fingers are not in direct contact with the organ. The present project aims at proposing a novel material, a magnetorheological elastomer (MRE) membrane as a haptic sensor. MREs are soft elastomeric materials comprising magnetic particles thus being able to deform significantly upon application of an external magnetic field. Recently, it was shown that by fabricating them in exotic or slender geometries one can exploit their resulting instabilities to shape surfaces, induce programmable swelling and deswelling, or even create swimming microrobots and externally controllable catheters. All those applications use MREs as actuators. By contrast, here, we plan to exploit the reverse operation that of sensing, i.e. induce magnetic field changes via deformation. The principle lies in using the inherent magneto-mechanical coupling to induce readable magnetic fields when the MRE deforms. The reading of the fields can then be translated back to a deformation and a force thus being able to sense soft or stiff objects. The very soft nature of MREs will allow for a very sensitive measurement of forces as low as those felt by touching a soft gel or baby-skin.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC-POC - HORIZON ERC Proof of Concept Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-POC2

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 150 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data

Beneficiaries (1)

My booklet 0 0