Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

A circular by design environmentally friendly geothermal energy solution based on a horizontal closed loop - HOCLOOP

CORDIS provides links to public deliverables and publications of HORIZON projects.

Links to deliverables and publications from FP7 projects, as well as links to some specific result types such as dataset and software, are dynamically retrieved from OpenAIRE .

Deliverables

Project and data management plan (opens in new window)

The deliverable will contain the Project and data management plans in a single report. The DMP will describe how the data will be managed in a secure, reproducible auditable and compliant manner following the FAIR principles. The project management plan will consist of the integrative management which is consolidated at different processes: cost, resources, communication, content and delay, risk, purchase and legal aspects.Will also address open access to research data, and explain how to deal with it. The Data management plan will address and guarantee open access to research data.

Benchmark cases (opens in new window)

Procedures for benchmarking geothermal simulators will be developed in the task. Building analytical solutions for the temperature in an injection well and the surrounding rock, we will define cases for software validation.

Optimized design for the closed loop geothermal system (opens in new window)

We will run a series of numerical simulations of different well designs to find the optimal design with regard to different well-depth, length, diameter, rock properties, fluid circulation rates and tubing properties. The simulations will quantify the decline in power over years of production. We expect the results to show that quite different well designs may produce nearly the same power. The optimal well designs form the basis for the development of actual sites.

Flow pipe model for fluid circulation (opens in new window)

The report will contain a description of the different available tools for well modeling and results for different well configurations using water as pipe-fluid. The available models for the heat flow towards geothermal well from Task 2.1 will be integrated in models for the heat and fluid flow in the annulus and the central pipe. We will see how a model for heat flow towards a geothermal well can be coupled with advanced state-of-the-art models for pipe flow, either commercial software (i.e., OLGA Dynamic Multiphase Flow Simulator) or in-house tools. Using CFD advanced models for the pipe flow, we will predict the flow regime in the pipes, in case of multiphase flows, and test the heat transfer coefficients that control the heat flow from the well-wall interface to the fluid. We will add details to the numerical grids for better resolution of the heat flow between the inner tube and the annulus and the structure of the near well area.

Innovation exploitation, communication and dissemination plans (opens in new window)

Provide documents with updated plans.

Annual report 1 (opens in new window)

First Technical annual report of the project HOCLOOP

Risk Management Plan (opens in new window)

The deliverable will contain the risk management plan of the project, describing how the risks of the project will be handled, estimating their impact and drafting out the mitigation measures.

Publications

Impact of borehole path deviations on the efficiency of a medium-deep geothermal storage system: Case study of the SKEWS MD-BTES Demosite (opens in new window)

Author(s): Matthias Krusemark, Lukas Seib, Max Ohagen, Bastian Welsch, Hung Tien Pham, Ingo Sass
Published in: Journal of Energy Storage, Issue 125, 2025, ISSN 2352-152X
Publisher: Elsevier BV
DOI: 10.1016/J.EST.2025.116959

Distributed geothermal response test on a 750 m deep borehole thermal energy storage system (opens in new window)

Author(s): Lukas Seib, Matthias Krusemark, Clemens Lehr, Max Ohagen, Hung Pham, Markus Schedel, Bastian Welsch, Ingo Sass
Published in: Applied Thermal Engineering, Issue 273, 2025, ISSN 1359-4311
Publisher: Elsevier BV
DOI: 10.1016/J.APPLTHERMALENG.2025.126322

Controlling injection conditions of a deep coaxial closed well heat exchanger to meet irregular heat demands: a field case study in Belgium (Mol) (opens in new window)

Author(s): Leontidis, Vlasios; Hernandez, Edgar; Pogacnik, Justin; Wangen, Magnus; Harcouët-Menou, Virginie
Published in: Geothermal Energy, 2025, ISSN 2195-9706
Publisher: Geothermal Energy
DOI: 10.1186/S40517-025-00331-Y

Simulation of Closed-Loop Geothermal Systems (opens in new window)

Author(s): M. Wangen, V. Leontidis, E. Hernandez Acevedo, V. Harcouët-Menou, P. Ungar
Published in: 85th EAGE Annual Conference & Exhibition, 2025
Publisher: European Association of Geoscientists & Engineers
DOI: 10.3997/2214-4609.202410516

The HOCLOOP Project: Tools to Model Heat Extraction From Horizontal Closed Wells (opens in new window)

Author(s): V. Leontidis, E.H. Acevedo, V. Harcouët-Menou, M. Wangen
Published in: 4th EAGE Global Energy Transition Conference and Exhibition, Paris-France, November 2023, 2023, ISSN 2214-4609
Publisher: EAGE
DOI: 10.3997/2214-4609.202321044

THERMO-ECONOMIC ANALYSIS OF A GEOTHERMAL-BASED HIGH TEMPERATURE HEAT PUMP (opens in new window)

Author(s): Pietro Ungar, Daniele Fiaschi, Giampaolo Manfrida
Published in: 37th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2024), 2025
Publisher: ECOS 2024
DOI: 10.52202/077185-0109

Searching for OpenAIRE data...

There was an error trying to search data from OpenAIRE

No results available

My booklet 0 0