Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS

Air-Brayton cycle concentrated solar power future plants via redox oxides-based structured thermochemical heat exchangers/thermal boosters

Project description

CSP coupling to carbon-neutral air-Brayton gas-turbine cycle to boost efficiency

Highly efficient air-Brayton combined power cycles used in traditional power plants involve fossil fuels combustion via pressurised air. The EU-funded ABraytCSPfuture project plans to develop a technology for air-operated concentrated solar power plants (CSPs) coupled to carbon-neutral air-Brayton gas turbine cycles. Researchers will demonstrate a first-of-its-kind compact, dual-bed thermochemical reactor/heat exchanger design. This unit will transfer heat from a non-pressurised air stream to a pressurised one, while also operating as a thermal booster, raising the temperature of the pressurised stream to the level required for Brayton cycles. Furthermore, the volumetric solar energy storage density of the CSPs will be significantly increased by using structured perovskite-based redox materials, prepared from cost-efficient and abundant raw sources, as the heat storage medium.

Objective

ABraytCSPfuture sets forth an innovative, carbon-neutral way for implementing into future air-operated CSP plants the inherently much more efficient air-Brayton gas turbine power generation cycles in order to achieve higher solar-to-electricity efficiencies, vital for competitiveness of CSP and non-reachable by either PVs or molten salts and thermal oils, significantly increasing in parallel the plants’ storage capability. Both these functionalities will be made possible by developing and demonstrating the integrated operation of a first-of-its-kind, compact, dual-bed thermochemical reactor/heat exchanger design, comprised of non-moving, flow-through porous ceramic structures (honeycombs or foams) based on earth-abundant, inexpensive, non-toxic oxide materials, capable of performing simultaneously the following:
• transferring heat from a non-pressurized air stream to a pressurized one, while operating simultaneously as a “thermal booster”, raising the temperature of the pressurized stream to levels required for gas turbine air-Brayton cycles.
• Increasing significantly the volumetric solar energy storage density of such air-operated CSP plants by rendering their current sensible-only regenerative storage systems to hybrid sensible-thermochemical storage ones, within the same storage volume,
Both these functionalities will be materialized by exploiting reversible reduction/oxidation reactions of such oxides in direct contact with air, accompanied by significant endothermic/exothermic heat effects. The first one in particular, will be achieved by performing the reduction of these oxides with solar-heated air streams under atmospheric pressure but their exothermic oxidation with pressurized air streams. The proposed technology is set forth by an interdisciplinary partnership spanning the entire CSP value chain, comprised of leading research centers, universities, innovative SMEs and large enterprises, including ancillary services providers and technology end-users.

Coordinator

DEUTSCHES ZENTRUM FUR LUFT - UND RAUMFAHRT EV
Net EU contribution
€ 592 500,00
Address
LINDER HOHE
51147 Koln
Germany

See on map

Region
Nordrhein-Westfalen Köln Köln, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost
€ 592 500,00

Participants (10)