Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Dynamic Magnetosphere Ionosphere Thermosphere coupling

Project description

Understanding Earth’s interaction with space in the polar ionosphere

Understanding how Earth interacts with space in the polar ionosphere is crucial for explaining ionospheric observations and improving space weather predictions. Unfortunately, our current understanding of Earth’s ionosphere is severely limited. To address this issue, the EU-funded DynaMIT project will use first principles to model how the neutral atmosphere, plasma, and electromagnetic fields interact. The project will build and integrate the DynaMIT model with novel measurements using an innovative data assimilation technique developed in-house. By doing so, the project will create a radically new platform to enable researchers to investigate how ionospheric dynamics affect Earth’s magnetic field, how energy flows between different regions, how it dissipates in the atmosphere, and how space-atmosphere coupling shapes near-Earth space.

Objective

DynaMIT addresses a fundamental misunderstanding of how Earth is coupled to space in the polar ionosphere. Here, the neutral atmosphere collides with charged particles influenced by electromagnetic fields, profoundly impacting the dynamics of the atmosphere and its surroundings. Despite being the best instrumented region of space, our understanding of Earth’s ionosphere is severely limited. The current paradigm contains two crippling assumptions: that the ionosphere is 1) only 2D, and 2) in a steady state. This conceptualisation obscures the complex interplay of forces that change the fluids and electromagnetic fields in both regions. This prevents us from accurately understanding phenomena, such as the aurora polaris, that have been observed and studied from ground for centuries. To advance beyond the state of the art we must transition to a dynamic view of space-atmosphere coupling. This project will apply first principles to model how the neutral atmosphere, plasma, and electromagnetic fields interact. To do this, we will build and combine the DynaMIT model with novel measurements using an innovative data assimilation technique developed in-house. This ground-breaking combination of multi-instrument data with full 3D numerical simulations will create a radical new platform from which we will interrogate fundamental outstanding issues in space physics: 1) how ionospheric dynamics disturbs Earth’s magnetic field; 2) how energy flows between regions, and how it dissipates in the atmosphere; and 3) how space-atmosphere coupling shapes near-Earth space. These questions are critical for understanding how Earth interacts with space, and the influence on technology, climate, and circulation in the lower atmosphere. If successful, DynaMIT will be a paradigm change that transforms our conceptual understanding of how the atmosphere is coupled with space, provides language to explain ionospheric observations, and paves the way for improvements in space weather predictions.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-COG

See all projects funded under this call

Host institution

UNIVERSITETET I BERGEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 000 000,00
Address
MUSEPLASSEN 1
5020 Bergen
Norway

See on map

Region
Norge Vestlandet Vestland
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 000 000,00

Beneficiaries (1)

My booklet 0 0