Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Laminated Perovskite Photovoltaics: Enabling large area processing of durable and high efficiency perovskite semiconductor thin films.

Objective

Photovoltaic technologies are cornerstones of all future scenarios for sustainable energy supply. Enhancing the efficiency and reducing the costs of photovoltaics is a challenge of utmost urgency and importance to the research field of materials engineering and science. To date, hybrid organicinorganic lead halide perovskite semiconductors denote the most promising material class for future low-cost and high-efficiency next-generation photovoltaics. Major hurdles that hinder the economic breakthrough are the low stability and the large-area fabrication of high-quality perovskite thin films. In response, LAMI-PERO will break new ground by researching and developing a novel lamination process that is designed to enable the processing of unexplored perovskite semiconductors and heterostructures, more durable thin film morphologies, and novel high-efficiency device architectures. My team and I were among the first to report preliminary data on this lamination process. It combines two half-stacks in a high-pressure step and allows crystalizing the pre-deposited precursor materials into a high-quality perovskite thin film. Thereby, the lamination disentangles critical constraints of established sequential layer deposition. To reach its ambitious goals, LAMI-PERO will (1) close the knowledge gap about the underlying physics of the perovskite film formation during the lamination process using innovative in-situ characterization, (2) explore more stable thin film morphologies and novel perovskite semiconductors, (3) fabricate more durable and high-efficiency perovskite solar cells and perovskite-based tandem solar cells, and (4) demonstrate the scalability of the lamination process in view of future commercialization. To date, the lamination of perovskite thin films is largely unexplored and the proposed research implies high risks but bears the enormous potential of paving the way for a breakthrough regarding the longevity and scalability of perovskite photovoltaics.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-COG

See all projects funded under this call

Host institution

KARLSRUHER INSTITUT FUER TECHNOLOGIE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 349 755,00
Address
KAISERSTRASSE 12
76131 Karlsruhe
Germany

See on map

Region
Baden-Württemberg Karlsruhe Karlsruhe, Stadtkreis
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 349 755,00

Beneficiaries (1)

My booklet 0 0