Project description
Mitigating human-induced seismicity, maximising renewable resource use
Climate change poses a significant threat. Technologies that use underground resources and storage have the potential to induce earthquakes through the injection of fluids into the Earth’s crust. Therefore, careful consideration is crucial before implementing these solutions. The ERC-funded INJECT project introduces a novel scientific approach to mitigate human-induced seismicity and maximise energy production from sustainable resources. It applies a methodology that incorporates control theory and mathematics. It leverages advanced theoretical innovations to optimally adjust fluid injection rates, prevent induced seismic events, and optimise energy production and storage. The project relies on mathematical proofs to develop robust controllers and observers, accounting for the complexities, heterogeneities and uncertainties inherent in the underlying physical processes.
Objective
Climate change poses an imminent threat to our civilization. Prominent new technologies to fight climate change involve the earth’s underground renewable and sustainable energy resources and underground storage. However, all these technologies depend on the injection of fluids into the earth’s crust, which, in turn, can cause significant earthquakes. INJECT will solve this problem on the basis of a new, ground-breaking scientific method that will prevent human-induced seismicity and will maximize energy production and storage from renewable and sustainable natural resources.
INJECT’s interdisciplinary methodology is based on an astute scientific programme that brings knowledge far beyond the current state of the art. It brings control theory and mathematics to the heart of this new challenging problem. Based on cutting-edge theoretical developments, robust controllers and observers will be designed to optimally adjust fluid injection rates, prevent induced seismic events over large regions and optimize energy production and storage. The controllers will be derived using rigorous mathematical proofs and will take account of the complexity, the heterogeneities and the various uncertainties of the underlying physical processes. INJECT’s innovative theoretical methods will be thoroughly tested through novel numerical models and original experiments. High-fidelity numerical models will account for poro-elasto-dynamics, Coulomb friction, multiphysics and reduced-order modeling, and will outpace any existing algorithms in fault mechanics, both in terms of speed and accuracy. The experimental plan will build on a novel laboratory-scale demonstrator and hybrid lab-computer testing that will be designed and constructed to experimentally validate INJECT’s new concepts. Only then will it be possible to apply INJECT’s methodology in practice and unlock the significant energy potential of the Earth, reduce carbon emissions and help save our civilization.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences earth and related environmental sciences geology seismology
- natural sciences mathematics
- natural sciences computer and information sciences computational science multiphysics
- social sciences economics and business economics sustainable economy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
91120 Palaiseau
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.