Project description
Exploring interactions of mutations in evolution
Mutations are the ultimate source of all genetic variation, and they may be either neutral, deleterious or beneficial in terms of their effect on the organism's ability to survive and reproduce. We understand the effects of individual mutations, but mutations may also interact with one another, a phenomenon called epistasis. Funded by the European Research Council, the EPISTAT project will study the rate and distribution of epistatic interactions among spontaneous mutations. Project findings will advance our understanding of how populations adapt to new environments and how new species arise.
Objective
The distribution of fitness effects of mutations is vital to our understanding of rates and patterns of adaptation. Population genetics and mutation accumulation experiments have given us insight into the distribution of fitness effects of single mutations. However, mutations often interact with each other. This is called epistasis. The role of epistatic interactions in adaptation has remained controversial. Yet, the distribution of epistatic effects is as fundamental as distribution of mutational effects themselves. Without knowing the distribution of epistatic effects, we cant calculate the average fitness effect of a given mutation across multiple genetic backgrounds. Moreover, if epistatic interactions tend to be positive or negative on average, this will have an important effect on evolutionary dynamics. Epistatic interactions are also known to play a role in speciation, but the proportion of mutations that exhibit incompatible interactions that can lead to speciation is unknown. I will investigate the properties of epistatic interactions among mutations with two complementary approaches. First, I will estimate the probability and distribution of effects of epistatic interactions among spontaneous mutations. I will cross mutation accumulation lines that I have developed for the fungus Neurospora crassa to produce a mapping population where spontaneous mutations are segregating, and use it to estimate the distribution of epistatic effects. Second, I will estimate the proportion of substitutions that cause reproductive incompatibilities between populations from the relationship between reproductive isolation and genetic divergence. This is achieved by an evolution experiment with fission yeast, with a design that will maximize the rate of genetic divergence with minimal change in mean phenotype. The elucidation of properties of epistatic interactions will be a major breakthrough for the field of evolutionary biology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences microbiology mycology
- natural sciences biological sciences genetics mutation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
40100 Jyvaskyla
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.