Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Planetary space simulations based on the particle description for electrons and ions.

Project description

Advanced model to describe the planetary space environment

Funded by the European Research Council, the TerraVirtualE project aims to develop a particle model that describes the planetary space environment and how it is affected by solar storms. This is crucial for protecting infrastructure from such storms. Researchers will use the particle-in-cell model, where both ions and electrons are treated as particles. Furthermore, they will use the energy-conserving semi-implicit method (ECsim) to ensure energy conservation and numerical stability. Project activities will also involve enhancing adaptive spatial and temporal resolution and CPU-GPU algorithms designed for new supercomputers. These advancements should enable ECsim to model vast areas, equivalent to Earth’s space environment, using computers expected within 3 to 5 years.

Objective

The question about how solar storms impact a planet has both fundamental scientific importance and great
social impacts for protecting our infrastructure from the most powerful solar storms. At present, models rely
on a fluid description of the electrons due to algorithmic and computational challenges. Our goal is to develop
a model of the space environment around a planet based on a particle description of both ions and electrons.
We plan to use the particle in cell (PIC) model where both ions and electrons retain their nature as particles.
This PIC model will allow us to investigate the critical role of energetic electrons participating in the energy
and matter transfer from the solar wind to the planet inner space.
What makes this goal now possible is the Energy Conserving semi implicit method (ECsim), developed by
the PI. The ECsim conserves energy exactly, a critical element in the investigation of energy flow from the
solar wind. In addition, the energy conservation leads to enhanced numerical stability, which in turn greatly
augment ECsim’s capability to simulate very large systems such as planet atmospheres while treating electrons
as particles rather than fluid. We will start from this new development and introduce two critical innovations.
First, we will implement adaptive spatial and temporal resolution for finer resolution closer to the planet and
in selected areas of interest. Second, we will implement CPU-GPU algorithms for the new heterogeneous
supercomputers developed by EuroHPC.
These innovations will increase the capability of ECsim by more than an order of magnitude making it possible
to model a region as big as the Earth space environment with the computers available within the next 3-5 years.
If successful, we will have the first PIC model to describe a planetary space environment where the correct
particle nature of the electrons is considered with all its implication for the energy and matter transport.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-ERC - HORIZON ERC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2022-ADG

See all projects funded under this call

Host institution

KATHOLIEKE UNIVERSITEIT LEUVEN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 518 233,21
Address
OUDE MARKT 13
3000 LEUVEN
Belgium

See on map

Region
Vlaams Gewest Prov. Vlaams-Brabant Arr. Leuven
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 518 233,21

Beneficiaries (1)

My booklet 0 0