Objective
The PERLA project aims at developing electrically conductive fluids containing rod-like particles. Their novelty is based on the formation of dynamical system-spanning networks in fluid flow. It is well established that rod-like particles do not simply align, but do tumble and rotate in shear or elongational flow. However, the consequences of this tumbling on the percolation and electrical conductivity of suspensions are still unknown. This behaviour is expected to promote collisions and electrical connectivity throughout the suspension. PERLA will validate this fundamental hypothesis, and provide thereby new concepts for the development of conductive fluids with low viscosity, high and tunable conductivity. Systems of carbon nanotubes and short carbon fibers will be used as conductive Brownian and non-Brownian rods. They will be processed and optimized based on the longstanding expertise of the investigators in carbon chemistry and fiber processing. The structure, rheological and electrical properties of the suspensions will be characterized in depth in various flow conditions, from dilute to concentrated regimes. The latter will be of particular interest with the formation of liquid crystalline phases in which tumbling is also well established. The basic knowledge gained in PERLA will be exploited in examples of applications, including flow capacitors, capacitive water desalination and soft electronic sensors and vibrational energy harvesters. These applications are particularly promising regarding energy and environmental issues. However, they are currently limited by the use of highly viscous slurries made of spherical particles, or of heavy and poorly stable liquid metals. The fluids in PERLA will circumvent these limitations, and provide new degrees of freedom due to original effects related to their response to oscillatory pressures, or presence of particles of different sizes.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- engineering and technology chemical engineering separation technologies desalination
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.