Project description
Exploring gold’s chemical space beyond known oxidation states
Chemical elements are essential in chemistry, physics and biology. However, some elements have limited oxidation states when compared to others. Gold has limited oxidation states, and only Au(I) and Au(III) complexes are known at the molecular level. In this context, the ERC-funded Gold-Redox project will explore the chemical space of gold beyond its current known oxidation states. The project aims to identify ligands that will enable gold to accommodate new oxidation states and develop novel gold complexes ranging from Au(0) to Au(IV) and Au(V). The main challenge is to push gold out of its comfort zone to expand its potential applications. Gold-Redox focuses on ligand design and uses advanced experimental and computational methods for structure–properties analysis.
Objective
The chemical elements are central to chemistry, physics and biology. Exploring their different states and chemical bonding is thus of utmost importance. Yet, 150 years after Mendeleev recognized periodicity in the structure and properties of the elements, there is still much to discover and exploit. Indeed, some elements are still confined to a few oxidation states. This is especially true for gold which, despite major progress over the last decades, lags well behind the other transition metals. At the molecular level, only Au(I) and Au(III) complexes are known essentially.
The aim of Gold-Redox is to expand the chemical space of gold to other oxidation states that remain curiosities or are simply unknown. The bottleneck to overcome is to force gold outside its comfort zone. To this end, I will play with ligand design. I will identify ligands that enable gold to accommodate new oxidation states. Gold complexes in unprecedented forms, from Au(0) to Au(IV) and Au(V), will be designed, prepared and studied. Because of their peculiar electronic structures, these new oxidation states will open novel reactivity paths at gold. Most appealing are single-electron processes and Au(III)/Au(V) cycles.
Targeting new oxidation states and reactivities, Gold-Redox is inherently very exploratory and cutting-edge. To address this high risk-high gain challenge, I will capitalize on my expertise in highly reactive species and gold chemistry. Ligand design (I previously used to create unusual bonding situations such as with -acceptor ligands, and to emulate unprecedented reactivity of Au(I)/Au(III) complexes) will be central, as well as thorough structure-properties analyses by advanced experimental and computational methods. Gold-Redox will provide in-depth fundamental knowledge on novel gold species and will open new avenues in catalysis and photo-catalysis.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences catalysis photocatalysis
- natural sciences chemical sciences electrochemistry electrolysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.