Project description
Characterising the flow of granular materials exhibiting cohesion
The flow of granular materials is common in natural and industrial settings. It is quite complex, modified by many factors including non-homogeneous grain size and humidity, and difficult to predict. Cohesion in cases such as humid grains, powders or snow makes prediction even more challenging. The ERC-funded CohPa project aims to combine experimental, numerical and theoretical approaches to developing constitutive laws predicting granular flow behaviour in any cohesive granular material system. The project will focus on two cases: the rheology of sticky grains and the entanglement between frictional particles such as fibres or mixed fibres and grains.
Objective
How grains flow? Can we predict the behavior of sand, snow, powders and more generally of a collection of particles? In many situations both in nature or industry, this question is of importance to predict avalanches, landslides, or designing silos and industrial processes. While for simple fluids the measure of the viscosity is sufficient to compute and predict the flow, for granular materials the question remains open. The challenge of understanding the physics of granular flows has motivated many researches and constitutive laws have been developed for grains interacting by friction and collision. However, in many applications, grains present cohesion and predicting their behavior is much more challenging. Sticky or humid grains, powders, snow, fibers are examples of granular media having difficulties to flow, with clogging, agglomeration, intermittency. The CohPa project aims at a fundamental understanding of the behavior of cohesive granular materials, by combining experimental, numerical and theoretical approaches, with the ultimate goal of developping constitutive laws able to predict their behavior in any configuration. The two work packages correspond to two types of cohesive materials. In WP1, I will study cohesion resulting from the presence of adhesive forces between particles and I will focus on the development of model materials made of sticky grains with tailored surface properties as well as on real powders. By developing innovative rheological technics coupled with numerical simulations we hope to get a new understanding of the rheology. In WP2, I will study the cohesion arising from entanglement between frictional particles, as observed in an assembly of fibers (as in a bird nest or a cotton ball), or when mixing fibers and grains (typically roots in soils). They constitute a new class of disordered materials, in which the tensile strength results from a subtle coupling between geometry, elasticity and friction, which is not yet understood.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- engineering and technologymaterials engineeringfibers
- agricultural sciencesagriculture, forestry, and fisheriesagriculturegrains and oilseeds
- natural sciencesmathematicspure mathematicsgeometry
- social scienceslaw
You need to log in or register to use this function
Keywords
Programme(s)
- HORIZON.1.1 - European Research Council (ERC) Main Programme
Topic(s)
Funding Scheme
HORIZON-ERC - HORIZON ERC GrantsHost institution
75794 Paris
France