Objective
Interference is one of the most fundamental phenomena in optics, allowing us to confine, filter, manipulate and steer light with exquisite precision. It is at the core of thin-film optics and nanophotonics, two areas of science that catalyse major scientific and industrial advances. One fundamental property of optical interference, however, constitutes a major limitation – the characteristics of any interference-based structure depend on the angle between the light wave and the structure itself (e.g. the transmission wavelength of optical interference filters shifts strongly when the angle of incidence changes). So far, this ‘angular dispersion’ effect remains a largely unchallenged fundamental limit in optics.
HyAngle now proposes a novel strategy based on hybridizing light and matter states to break the angular dispersion limit. By tuning the coupling strength and offset between a photonic resonance formed by optical interference and the electronic resonance causing optical absorption in a material, I expect to be able to realize interference-based optical devices with spectrally sharp and angle-independent transmission, reflection and emission. We will explore the physics, potential and limitations of this approach by developing and studying dispersion-free optical filters, colour converters and LEDs with narrowband spectra. We will then pursue two specific applications, namely hyperspectral cameras and bio-implantable lensless fluorescence microscopes, where our devices will enable major advances in capability and unprecedented performance in deep tissue applications.
Our devices use organic materials that can be readily processed by high-throughput vacuum deposition and even from solution. The amorphous nature of these materials renders them intrinsically compatible with the dielectric and metallic films widely used in the optics and display industry. The strategy of HyAngle thus bears great potential for rapid development and broad application.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering colors
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences physical sciences optics microscopy
- engineering and technology nanotechnology nanophotonics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.1 - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-ERC - HORIZON ERC Grants
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2022-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
50931 KOLN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.