Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Miniaturized sensor system for continuous soil-nutrient monitoring based on integration of a lab-on-a-chip microfluidic cartridge with an optoelectronic detection unit

Project description

Continuous in situ soil monitoring harnessing lab-on-a-chip microfluidics and optoelectronics

Soil degradation is threatening our economy and our well-being. Regenerating and maintaining healthy soil is a key component of the European Green Deal, essential to achieving climate neutrality, zero pollution, sustainable food provision and a resilient environment. Building on the European Research Council-funded BEAMOLED project, the European Innovation Council-funded SOILMONITOR project will develop a miniaturised sensor system (3 cm x 3 cm x 5 cm) capable of maintenance-free operation in situ for one year. It will monitor nitrate, ammonium and phosphate based on integration of a lab-on-a-chip microfluidic cartridge with an optoelectronic detection unit. The project is intended to lead to the establishment of a spin-off company, combining science with entrepreneurship.

Objective

The soil of the earth is the basis of our life. Efficient use of soil is needed for feeding the growing population. Contaminated soil needs to be regenerated to protect the quality of drinking water and more generally the ecosystem. Here, we propose a highly miniaturized sensor system for monitoring nitrate, ammonium, and phosphate based on integration of a lab-on-a-chip microfluidic cartridge with an optoelectronic detection unit. The optoelectronic detection chip employs the directional organic light emitting diode (OLED) we developed within the ERC PoC project BEAMOLED. This kind of OLED allows for direct integration of the optoelectronic chip with the microfluidic cartridge providing a new level of miniaturization of the optical readout measurement system. We propose the use of colorimetric assays based on starting with standard assays and improving performance using nanozyme catalysis. A hydrophilic ceramic as inlet to a microfluidic channel is proposed for intake of soil solution. Reagents as well as the waste are stored in the sensor system. We target a system size of 3 cm x 3 cm x 5 cm for maintenance-free operation in the soil for a duration of one year for in-situ monitoring of 100 data points per nutrient. In a soil-science study the soil-solution extraction into the microfluidic will be investigated for soils with a wide range of pore size distributions, bulk densities, pore-space connectivity, and soil water content to validate the extraction approach scientifically. Pot and field tests in agriculture and soil remediation are planned for validation in application-relevant environments of two potential markets and to develop market readiness. Our aim is to start a spin-off company after completion of this project. By the parallel development of the technology and business side with an interdisciplinary team from electrical engineering, chemical engineering, soil science, and economics/entrepreneurship an iterative adjustment process is achieved.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

HORIZON-EIC - HORIZON EIC Grants

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) HORIZON-EIC-2022-TRANSITION-01

See all projects funded under this call

Coordinator

CHRISTIAN-ALBRECHTS-UNIVERSITAET ZU KIEL
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 499 716,00
Address
OLSHAUSENSTRASSE 40
24118 Kiel
Germany

See on map

Region
Schleswig-Holstein Schleswig-Holstein Kiel, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 499 716,25
My booklet 0 0