Objective
The use of renewable hydrogen as green fuel and energy storage was deemed key to achieve the European Green Deal. However, its large-scale storage is still facing significant challenges. Measurement inversion via deep learning (DL) is a state-of-the-art approach used for underground storage-site detection and monitoring. However: 1) It requires a huge amount of training data; 2) DL training is expensive, and 3) There are no efficient and reliable DL techniques for multiscale electromagnetic measurement inversion.
The goal of GEOLEARN is to guide hydrogen storage technologies by inverting subsurface multiscale electromagnetic measurements in real time using energy-efficient DL methods. For this purpose, GEOLEARN will leverage mixed-precision (MP) computations to maximise energy- and cost-efficiency, and ensure scalability. GEOLEARN proposes to address the above challenges as follows: 1) Develop MP finite element methods (FEMs) that can rapidly generate large training data; 2) Design MP DL algorithms that can efficiently process huge databases during training and invert measurements in real time, and 3) Apply the new techniques to invert multiscale geophysical electromagnetic measurements and guide hydrogen storage.
We will collaborate with industry to disseminate the project results and maximise exploitation, and the new methods will lead to high impacts in and outside academia.
The host has extensive experience in DL methods for inverse problems in geophysics and FEMs, and already collaborates with relevant companies. The secondment host is expert in high-performance computing and FEMs, and the applicant is expert in MP methods for scientific computing. This multidisciplinary research team is essential for the success of GEOLEARN, and will enhance the applicant's knowledge, network and skills, promoting his future career in research in Europe. The hosts and applicant will mutually benefit from the project outcomes and the industrial and academic collaborations.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences computer and information sciences databases
- natural sciences earth and related environmental sciences geophysics
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
HORIZON.1.2 - Marie Skłodowska-Curie Actions (MSCA)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
HORIZON-TMA-MSCA-PF-EF - HORIZON TMA MSCA Postdoctoral Fellowships - European Fellowships
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) HORIZON-MSCA-2022-PF-01
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
48009 Bilbao
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.